39 research outputs found

    Alphavirus Replicon Particles Expressing TRP-2 Provide Potent Therapeutic Effect on Melanoma through Activation of Humoral and Cellular Immunity

    Get PDF
    Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials

    Behavioral Corporate Finance: An Updated Survey

    Full text link

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Learning ″Semantotopic Maps″ from Context

    No full text
    Ritter H, Kohonen T. Learning ″Semantotopic Maps″ from Context. In: Caudill M, ed. International Joint Conference on Neural Networks : January 15 - 19, 1990, Washington, DC. IJCNN-90-Wash DC. Vol 1. Hillsdale: Erlbaum; 1990: 23-26

    La fièvre hémorragique de Crimée-Congo, une future problématique de santé en France ?

    No full text
    International audienceThe Crimean-Congo hemorrhagic fever virus (CCHFV) is the etiological agent of a severe hemorrhagic fever affecting Africa, Asia and southern Europe. Climate changes of recent decades have recently led to a rise in the distribution of this virus. Still few scientific data are available on the biology of its vector, the tick, or its own biology, but the proven presence of human infections observed in Spain and animals with positive serology in Corsica should focus our attention on this pathogen. This review takes stock of the epidemiologic evolution of CCHF in Europe, notably in France.Le virus de la fièvre hémorragique de Crimée-Congo (CCHFV) est l’agent étiologique d’une fièvre hémorragique grave affectant l’Afrique, l’Asie et le sud de l’Europe. Les modifications climatiques de ces dernières décennies induisent depuis peu une remontée de l’aire de distribution de ce virus. Encore peu de données scientifiques sont disponibles sur les interactions avec son vecteur, la tique, ou sur sa biologie propre. Cependant, la présence avérée d’infections humaines en Espagne et des sérologies positives dans le cheptel corse pourraient bien concentrer l’attention sur ce pathogène. Cette revue fait le point sur l’évolution des connaissances éco-épidémiologiques de ce virus, notamment en Europe et plus particulièrement en France

    NBER WORKING PAPER SERIES A REVIEW OF IPO ACTIVITY, PRICING, AND ALLOCATIONS Presented at the 2002 Atlanta AFA meetings. We thank

    No full text
    for comments, and Kenneth French for supplying factor returns. The authors maintain a more extensive bibliography of IPO-related work at http://www.iporesources.org. This website further contains links to many IPO-related sites and some reasonably up-to-date information on aggregate IPO activity and IPO working papers. The views expressed herein are those of the authors and not necessarily those of the National Bureau of Economic Research

    Low-density hepatitis C virus infectious particles are protected from oxidation by secreted cellular proteins

    No full text
    International audienceHepatitis C virus (HCV) particles secreted from cells are stable at 37°C, whether the producer cell media contain serum or not. Yet, we found that intracellular HCV particles harvested after freeze-thawing of producer cells are highly unstable upon resuspension in a serum-free medium, indicating that either HCV particles gain intrinsic stability during their secretion and egress from producer cells or, alternatively, that a factor secreted from cells can stabilize intrinsically unstable HCV particles. We aimed at investigating either possibility and unraveling the mechanisms evolved by HCV to promote the stability of its viral particles. We showed that after purification and resuspension in a serum-free medium, HCV infectious particles released in cell supernatants are quickly and specifically degraded at 37°C in comparison to other viruses that can infect hepatic cells. We also found that cell-secreted proteins, including human serum albumin and transferrin, could protect HCV particles from this loss of infectivity. Moreover, we showed that such protection mainly impacted low-density particles (d < 1.08), suggesting a specific alteration of viral particles that are lipidated. Since we also demonstrated that neither HCV RNA nor surface glycoproteins were altered, this suggested that virion lipids are sensitive to decay, resulting in a loss of infectivity. Indeed, our results further indicated that HCV particles are sensitive to oxidation, which leads to a loss of their membrane fusion capacity. Altogether, our results indicate that HCV is highly sensitive to oxidation and highlight a specific protection mechanism evolved by HCV to prevent oxidation-mediated degradation of its lipidated particles by using secreted factors
    corecore