17 research outputs found

    FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    Get PDF
    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA)

    Mid-Infrared Laser Spectroscopy Applications in Process Analytical Technology: Cleaning Validation, Microorganisms, and Active Pharmaceutical Ingredients in Formulations

    Get PDF
    Mid-infrared (MIR) lasers are very high-brightness energy sources that are replacing conventional thermal sources (globars) in many infrared spectroscopy (IRS) techniques. Although not all laser properties have been exploited in depth, properties such as collimation, polarization, high brightness, and very high resolution have contributed to recast IRS tools. Applications of MIR laser spectroscopy to process analytical technology (PAT) are numerous and important. As an example, a compact grazing angle probe mount has allowed coupling to a MIR quantum cascade laser (QCL), enabling reflectance-absorbance infrared spectroscopy (RAIRS) measurements. This methodology, coupled to powerful multivariable analysis (MVA) routines of chemometrics and fast Fourier transform (FFT) preprocessing of the data resulted in very low limits of detection of active pharmaceutical ingredients (APIs) and high explosives (HEs) reaching trace levels. This methodology can be used to measure concentrations of surface contaminants for validation of cleanliness of pharmaceutical and biotechnology processing batch reactors and other manufacturing vessels. Another application discussed concerns the enhanced detection of microorganisms that can be encountered in pharmaceutical and biotechnology plants as contaminants and that could also be used as weapons of mass destruction in biological warfare. In the last application discussed, the concentration of APIs in formulations was determined by MIR laser spectroscopy and was cross validated with high-performance liquid chromatography

    Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Get PDF
    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Stool microbiome dataset of the critically endangered Puerto Rican parrot (Amazona vittata)

    No full text
    The Puerto Rican parrot (Amazona vittata), endemic to Puerto Rico, is the only native parrot in the United States and is classified as a critically endangered species. There are two captive populations of A. vittata in Puerto Rico located in the Iguaca Aviary in El Yunque National Rainforest and the José L. Vivaldi Aviary in the Río Abajo Forest. To characterize the microbial communities of A. vittata’s stool, 21 stool samples from captive birds were collected, DNA extracted and sequenced using Illumina MiSeq. Sequences were processed by removing host sequences (A. vittata genome) and low-quality reads. Taxonomic and functional profiles were generated using MG-RAST. The most abundant domain was Bacteria (96%), followed by Virus (3%), and Eukaryota (0.6%). Among the functions in the microbiome, the most abundant was related to carbohydrates (14%), followed by clustering-based subsystems (12%), protein metabolism (8%), and amino acids and derivatives (7%). This dataset describes the stool microbiome of A. vittata using a metagenomics approach. Data can be used to develop holistic conservation strategies for A. vittata and other endangered birds, as well as to search for bioprospects with potential biomedical and biotechnological applications

    Microbiome dataset from Clara Cave and Empalme Sinkhole waters in Puerto Rico

    No full text
    Camuy River Cave Park (CRCP) is an underground cave system located at the subtropical karst carved by the Camuy River in the subtropical moist forest of northern Puerto Rico (Nieves-Rivera, 2003) [1]. This article contains a metagenomic dataset from the microbial and functional diversity of Clara Cave and Empalme Sinkhole water samples. The environmental DNA (eDNA) from the samples was extracted following direct Metagenomic DNA Isolation method, followed by Next-Generation-Sequencing technology (Illumina MiSeq). The sequences were submitted to MG-RAST online server for taxonomic profile generation and functional in silico description of the samples. The data consisted of domain Bacteria (96.69%), followed up by Viruses (2.87%), Eukaryotes (0.37%), and Archaea (0.02%). The data distribution by phyla showed Proteobacteria (92.61%), Bacteroidetes (1.66%), Actinobacteria (1.12%), and Firmicutes (0.48%). The subsystem functional data showed that 12.97% of genes were related to clustering-based subsystems, 11.40% to carbohydrates, and 11.0% to amino acids and derivatives. The metagenome dataset generated will provide an understanding and comparison framework of the microbial composition and functional diversity present in caves

    Features of Rhodobacter sphaeroides CcmFH

    No full text
    In this study, the in vivo function and properties of two cytochrome c maturation proteins, CcmF and CcmH from Rhodobacter sphaeroides, were analyzed. Strains lacking CcmH or both CcmF and CcmH are unable to grow under anaerobic conditions where c-type cytochromes are required, demonstrating their critical role in the assembly of these electron carriers. Consistent with this observation, strains lacking both CcmF and CcmH are deficient in c-type cytochromes when assayed under permissive growth conditions. In contrast, under permissive growth conditions, strains lacking only CcmH contain several soluble and membrane-bound c-type cytochromes, albeit at reduced levels, suggesting that this bacterium has a CcmH-independent route for their maturation. In addition, the function of CcmH that is needed to support anaerobic growth can be replaced by adding cysteine or cystine to growth media. The ability of exogenous thiol compounds to replace CcmH provides the first physiological evidence for a role of this protein in thiol chemistry during c-type cytochrome maturation. The properties of R. sphaeroides cells containing translational fusions between CcmF and CcmH and either Escherichia coli alkaline phosphatase or β-galactosidase suggest that they are each integral cytoplasmic membrane proteins with their presumed catalytic domains facing the periplasm. Analysis of CcmH shows that it is synthesized as a higher-molecular-weight precursor protein with an N-terminal signal sequence

    Learning Geomicrobiology as a Team Using Microbial Mats, a Multidisciplinary Approach

    No full text
    Microbial mats are one of the best suited laminar organo-sedimentary ecosystems for students from different educational backgrounds to visualize the direct relationship between microbes and minerals. We have used tropical hypersaline microbial mats from Puerto Rico as educational tools to promote active learning of geomicrobiology introductory concepts for undergraduate students organized in multidisciplinary teams with biological and geological backgrounds. Besides field trips and independent research projects focused on microbial mats, four intensive workshops and one capstone activity were designed to expose students to the different geomicrobiology subdisciplines (microbiology, molecular biology, geology, and geochemistry). The teaching-learning process was assessed using pre- and posttests, group discussions, activities including Gallery Walks and exquisite cadaver’s, case studies, and focal interviews. While the posttest showed a significant difference in conceptual understanding, the Gallery Walk and the capstone activities demonstrated increase in the depth, coherence, and thoughtfulness in answering questions, including a clear integration of the different subdisciplines during their presentations. Finally, the main themes described by the students as important outcomes of their participation in the Research at Undergraduate Institutions: Microbial Observatory (RUI-MO) program were: (i) the opportunity to study and learn new and different science disciplines, (ii) the microbial mats were excellent tools to learn from and integrate different science disciplines, and (iii) working in multidisciplinary teams gave them the opportunity to learn fro

    The metagenome of bromeliads phytotelma in Puerto Rico

    No full text
    Bromeliads tank water or phytotelma is an eutrophic microenvironment where microorganisms have evolved to resist sudden changes in pH and nutritional competition. Metagenomics studies have been poorly studied in bromeliads and environmental DNA (eDNA) characterization for its microenvironment is deficient in Puerto Rico. Therefore, the data represents the microbial communities inhabiting bromeliads phytotelma. eDNA was extracted using Metagenomic DNA Isolation Kit for Water. Next-Generation-Sequencing technology (Illumina MiSeq) was used for sequencing the isolated eDNA. This data provides an insight about diversity and functional depiction of microorganisms inhabiting bromeliads phytotelma. The data of this metagenome is available in the BioSample Submission Portal as Bioproject PRJNA39461 and Sequence Read Archive (SRA) accession number SRP114300. MG-RAST metagenomic analysis server is located under the study ID mgp79812. Keywords: Bromeliads, Phytotelma, DNA, Metagenome, Characterization, Illumin

    The metagenome of Caracolus marginella gut microbiome using culture independent approaches and shotgun sequencing

    No full text
    Studies underestimate the microbial diversity and genotypic traits in the snails’ microbiome. Caracolus marginella, a land snail native to Caribbean islands, can adapt to different environments. Our research focused on the generation of a metagenomic library from C. marginella gut, to further explore the diversity and functional traits. Thirty specimens of C. marginella were collected from the four regions of Puerto Rico. High molecular weight (40 kb) metagenomic libraries were generated using a direct DNA isolation method. DNA was end-repaired and ligated into a pCCFOS1 fosmid vector; then, the cloned DNA was transduced into Escherichia coli EPI300. The master pool library contains approximately 60,200 clones and restriction enzyme digestion showed that 90% of the library contains insert. After removing the fosmid and host genome sequences, 567,015 sequences were analyzed using the MG-RAST online server. The Bacteria domain was the most abundant (82.15%), followed by viruses (16.49%), eukaryotes (0.83%) and archaea (0.31%). The Proteobacteria (51.47%) was predominant in the gut environment, followed by unidentified virus (16.28%), and Actinobacteria (8.52%). Escherichia coli, Streptomyces avermitilis, and Burkholderia sp. were the most abundant species present. Subsystem functional analysis showed that 35.00% of genes belong to transposable elements, 10.00% of genes belong to clustering-based subsystems, 4.00% of genes belong to the production of cofactors and secondary metabolites, and 2.00% resistance to antibiotics and toxic compounds. The data generated in this research is the first metagenomic examination of a snail gut in Puerto Rico, and will serve as a baseline to start understanding of C. marginella gut microbiome
    corecore