358 research outputs found

    Design and evaluation of a scalable hierarchical application component placement algorithm for cloud resource allocation

    Get PDF
    In the context of cloud systems, mapping application components to a set of physical servers and assigning resources to those components is challenging. For large-scale clouds, traditional resource allocation systems, which rely on a centralized management paradigm, become ineffective and inefficient. Therefore, there is an essential need of providing new management solutions that scale well with the size of large cloud systems. In this paper a distributed and hierarchical component placement algorithm is presented, evaluated and compared to a centralized algorithm. Each application is represented as a collection of interacting services, and multiple service types with differing placement characteristics are considered. Our evaluations show that the proposed algorithm is at least 84.65 times faster and offers better scalability compared with a central approach, while the percentage of servers used and fully placed applications remains close to that of the centralized algorithm

    Cloud resource provisioning and bandwidth management in media-centric networks

    Get PDF

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Reliability measure assignment to sonar for robust target differentiation

    Get PDF
    Cataloged from PDF version of article.This article addresses the use of evidential reasoning and majority voting in multi-sensor decision making for target differentiation using sonar sensors. Classification of target primitives which constitute the basic building blocks of typical surfaces in uncluttered robot environments has been considered. Multiple sonar sensors placed at geographically different sensing sites make decisions about the target type based on their measurement patterns. Their decisions are combined to reach a group decision through Dempster-Shafer evidential reasoning and majority voting, The sensing nodes view the targets at different ranges and angles so that they have different degrees of reliability. Proper accounting for these different reliabilities has the potential to improve decision making compared to simple uniform treatment of the sensors. Consistency problems arising in majority voting are addressed with a view to achieving high classification performance. This is done by introducing preference ordering among the possible target types and assigning reliability measures (which essentially serve as weights) to each decision-making node based on the target range and azimuth estimates it makes and the belief values it assigns to possible target types. The results bring substantial improvement over evidential reasoning and simple majority voting by reducing the target misclassification. rate. (C) 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved

    Pedestrian dead reckoning employing simultaneous activity recognition cues

    Get PDF
    Cataloged from PDF version of article.We consider the human localization problem using body-worn inertial/magnetic sensor units. Inertial sensors are characterized by a drift error caused by the integration of their rate output to obtain position information. Because of this drift, the position and orientation data obtained from inertial sensors are reliable over only short periods of time. Therefore, position updates from externally referenced sensors are essential. However, if the map of the environment is known, the activity context of the user can provide information about his position. In particular, the switches in the activity context correspond to discrete locations on the map. By performing localization simultaneously with activity recognition, we detect the activity context switches and use the corresponding position information as position updates in a localization filter. The localization filter also involves a smoother that combines the two estimates obtained by running the zero-velocity update algorithm both forward and backward in time. We performed experiments with eight subjects in indoor and outdoor environments involving walking, turning and standing activities. Using a spatial error criterion, we show that the position errors can be decreased by about 85% on the average. We also present the results of two 3D experiments performed in realistic indoor environments and demonstrate that it is possible to achieve over 90% error reduction in position by performing localization simultaneously with activity recognition

    Novel Compression Algorithm Based on Sparse Sampling of 3-D Laser Range Scans

    Get PDF
    Cataloged from PDF version of article.Three-dimensional models of environments can be very useful and are commonly employed in areas such as robotics, art and architecture, facility management, water management, environmental/industrial/urban planning and documentation. A 3-D model is typically composed of a large number of measurements. When 3-D models of environments need to be transmitted or stored, they should be compressed efficiently to use the capacity of the communication channel or the storage medium effectively. We propose a novel compression technique based on compressive sampling applied to sparse representations of 3-D laser range measurements. The main issue here is finding highly sparse representations of the range measurements, since they do not have such representations in common domains, such as the frequency domain. To solve this problem, we develop a new algorithm to generate sparse innovations between consecutive range measurements acquired while the sensor moves. We compare the sparsity of our innovations with others generated by estimation and filtering. Furthermore, we compare the compression performance of our lossy compression method with widely used lossless and lossy compression techniques. The proposed method offers a small compression ratio and provides a reasonable compromise between the reconstruction error and processing time
    corecore