30 research outputs found

    Compartmental Tissue Characterization using NMR Relaxometry

    Get PDF

    Differentiating Axonal from Demyelinating Neuropathies using Multiparametric Quantitative MRI of Peripheral Nerves

    Get PDF
    Objectives: To develop a multiparametric quantitative MRI (qMRI) method to track pathological changes in the peripheral neuropathies. Background: Irrespective of the causes or types of polyneuropathies, peripheral nerves are mainly afflicted by two kinds of pathologies – axonal loss and demyelination. It is critical to differentiate between the two as treatments are different for the two conditions. While nerve conduction studies (NCS) have been used to differentiate the two pathologies in the distal nerves, there are no tools to probe the pathologies in the proximal peripheral nerves. This is particularly needed when distal nerves become non-responsive in NCS. Methods: We have developed a qMRI method that quantifies the sciatic and tibial nerves with 10 parameters that are sensitive to different aspects of myelin and axonal pathologies: magnetization transfer ratio (MTR), magnetization transfer saturation index (MTsat), longitudinal relaxation time (T1), proton density (PD), effective transverse relaxation time (T2*), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and nerve fascicular volume (fVol). In this pilot study, we studied 4 patients with Charcot-Marie-Tooth type-1A (CMT1A), 2 patients with CMT type-2S (CMT2S), and 17 healthy controls. Results: Compared with the healthy controls, patients with CMT2S (axonal type) had a comparable MTR, MTsat, T1, PD and fVol, but a reduced T2*. While patients with CMT1A (demyelinating type) had a reduced MTR and MTsat, increased fVol, T1 and PD, and comparable T2*. All 6 patients with CMT shared a change in reduced FA, which was driven by a reduced AD and an increased RD. Conclusions: The data show different qMRI patterns between axonal and demyelinating neuropathies. The differential changes will be further verified in a larger cohort of patients with peripheral neuropathies

    Advances in diagnosis and management of distal sensory polyneuropathies

    Get PDF
    Distal sensory polyneuropathy (DSP) is characterised by length-dependent, sensory-predominant symptoms and signs, including potentially disabling symmetric chronic pain, tingling and poor balance. Some patients also have or develop dysautonomia or motor involvement depending on whether large myelinated or small fibres are predominantly affected. Although highly prevalent, diagnosis and management can be challenging. While classic diabetes and toxic causes are well-recognised, there are increasingly diverse associations, including with dysimmune, rheumatological and neurodegenerative conditions. Approximately half of cases are initially considered idiopathic despite thorough evaluation, but often, the causes emerge later as new symptoms develop or testing advances, for instance with genetic approaches. Improving and standardising DSP metrics, as already accomplished for motor neuropathies, would permit in-clinic longitudinal tracking of natural history and treatment responses. Standardising phenotyping could advance research and facilitate trials of potential therapies, which lag so far. This review updates on recent advances and summarises current evidence for specific treatments

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Rapid parameter estimation for selective inversion recovery myelin imaging using an open-source Julia toolkit

    No full text
    BACKGROUND: Magnetic resonance imaging (MRI) is used extensively to quantify myelin content, however computational bottlenecks remain challenging for advanced imaging techniques in clinical settings. We present a fast, open-source toolkit for processing quantitative magnetization transfer derived from selective inversion recovery (SIR) acquisitions that allows parameter map estimation, including the myelin-sensitive macromolecular pool size ratio (). Significant progress has been made in reducing SIR acquisition times to improve clinically feasibility. However, parameter map estimation from the resulting data remains computationally expensive. To overcome this computational limitation, we developed a computationally efficient, open-source toolkit implemented in the Julia language. METHODS: To test the accuracy of this toolkit, we simulated SIR images with varying and spin-lattice relaxation time of the free water pool ( ) over a physiologically meaningful scale from 5% to 20% and 0.5 to 1.5 s, respectively. Rician noise was then added, and the parameter maps were estimated using our Julia toolkit. Probability density histogram plots and Lin\u27s concordance correlation coefficients (LCCC) were used to assess accuracy and precision of the fits to our known simulation data. To further mimic biological tissue, we generated five cross-linked bovine serum albumin (BSA) phantoms with concentrations that ranged from 1.25% to 20%. The phantoms were imaged at 3T using SIR, and data were fit to estimate and . Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps were estimated to demonstrate the reduced computational time for a real-world clinical example. RESULTS: Estimated SIR parameter maps from our Julia toolkit agreed with simulated values (LCCC \u3e 0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 3T. In both cases, SIR parameter estimates were consistent with published values using MATLAB. However, compared to earlier work using MATLAB, our Julia toolkit provided an approximate 20-fold reduction in computational time. CONCLUSIONS: Presented here, we developed a fast, open-source, toolkit for rapid and accurate SIR MRI using Julia. The reduction in computational cost should allow SIR parameters to be accessible in clinical settings

    Quantitative Magnetization Transfer Imaging of the Breast at 3.0 T: Reproducibility in Healthy Volunteers

    No full text
    Quantitative magnetization transfer magnetic resonance imaging provides a means for indirectly detecting changes in the macromolecular content of tissue noninvasively. A potential application is the diagnosis and assessment of treatment response in breast cancer; however, before quantitative magnetization transfer imaging can be reliably used in such settings, the technique\u27s reproducibility in healthy breast tissue must be established. Thus, this study aims to establish the reproducibility of the measurement of the macromolecular-to-free water proton pool size ratio (PSR) in healthy fibroglandular (FG) breast tissue. Thirteen women with no history of breast disease were scanned twice within a single scanning session, with repositioning between scans. Eleven women had appreciable FG tissue for test–retest measurements. Mean PSR values for the FG tissue ranged from 9.5% to 16.7%. The absolute value of the difference between 2 mean PSR measurements for each volunteer ranged from 0.1% to 2.1%. The 95% confidence interval for the mean difference was ±0.75%, and the repeatability value was 2.39%. These results indicate that the expected measurement variability would be ±0.75% for a cohort of a similar size and would be ±2.39% for an individual, suggesting that future studies of change in PSR in patients with breast cancer are feasible

    Bloch–Siegert B1-Mapping Improves Accuracy and Precision of Longitudinal Relaxation Measurements in the Breast at 3 T

    No full text
    Variable flip angle (VFA) sequences are a popular method of calculating T1 values, which are required in a quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). B1 inhomogeneities are substantial in the breast at 3 T, and these errors negatively impact the accuracy of the VFA approach, thus leading to large errors in the DCE-MRI parameters that could limit clinical adoption of the technique. This study evaluated the ability of Bloch–Siegert B1 mapping to improve the accuracy and precision of VFA-derived T1 measurements in the breast. Test–retest MRI sessions were performed on 16 women with no history of breast disease. T1 was calculated using the VFA sequence, and B1 field variations were measured using the Bloch–Siegert methodology. As a gold standard, inversion recovery (IR) measurements of T1 were performed. Fibroglandular tissue and adipose tissue from each breast were segmented using the IR images, and the mean T1 was calculated for each tissue. Accuracy was evaluated by percent error (%err). Reproducibility was assessed via the 95% confidence interval (CI) of the mean difference and repeatability coefficient (r). After B1 correction, %err significantly (P < 0.001) decreased from 17% to 8.6%, and the 95% CI and r decreased from ±94 to ±38 milliseconds and from 276 to 111 milliseconds, respectively. Similar accuracy and reproducibility results were observed in the adipose tissue of the right breast and in both tissues of the left breast. Our data show that Bloch–Siegert B1 mapping improves accuracy and precision of VFA-derived T1 measurements in the breast
    corecore