157 research outputs found

    Fast Timing for High-Rate Environments with Micromegas

    Full text link
    The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate a Micromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkov-radiator front window, which produces sufficient UV photons to convert the ~100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ~50 primary photoelectrons, using a bulk Micromegas readout.Comment: MPGD2015 (4th Conference on Micro-Pattern Gaseous Detectors, Trieste, Italy, 12 - 15 October, 2015). 5 pages, 8 figure

    Geometrically necessary dislocations on plastic deformation of polycrystalline TRIP steel

    Get PDF
    In this study, the main deformation behavior in terms of geometrically necessary dislocations (GND) was investigated on a transformation induced plasticity (TRIP) stainless steel by using sharp indentation at nanometric length scale. Results evidence that austenitic grains display an isotropic behavior on terms of GND, the main deformation mechanism being the Frank–Read source activated at local level.Peer ReviewedPostprint (published version

    Mechanically activated rupture of single covalent bonds: evidence of force induced bond hydrolysis.

    Get PDF
    We have used temperature-dependent single molecule force spectroscopy to stretch covalently anchored carboxymethylated amylose (CMA) polymers attached to an amino-functionalized AFM cantilever. Using an Arrhenius kinetics model based on a Morse potential as a one-dimensional representation of covalent bonds, we have extracted kinetic and structural parameters of the bond rupture process. With 35.5 kJ mol−1, we found a significantly smaller dissociation energy and with 9.0 × 102 s−1 to 3.6 × 103 s−1 also smaller Arrhenius pre-factors than expected for homolytic bond scission. One possible explanation for the severely reduced dissociation energy and Arrhenius pre-factors is the mechanically activated hydrolysis of covalent bonds. Both the carboxylic acid amide and the siloxane bond in the amino-silane surface linker are in principle prone to bond hydrolysis. Scattering, slope and curvature of the scattered data plots indicate that in fact two competing rupture mechanisms are observed

    Highly strained, radially π-conjugated porphyrinylene nanohoops

    Get PDF
    Small π-conjugated nanohoops are difficult to prepare, but offer an excellent platform for studying the interplay between strain and optoelectronic properties, and, increasingly, these shape-persistent macrocycles find uses in host-guest chemistry and self-assembly. We report the synthesis of a new family of radially π-conjugated porphyrinylene/phenylene nanohoops. The strain energy in the smallest nanohoop [2]CPT is approximately 54 kcal mol⁻Âč, which results in a narrowed HOMO-LUMO gap and a red shift in the visible part of the absorption spectrum. Because of its high degree of preorganization and a diameter of ca. 13 Å, [2]CPT was found to accommodate C₆₀ with a binding affinity exceeding 10⁞ M⁻Âč despite the fullerene not fully entering the cavity of the host (X-ray crystallography). Moreover, the ?-extended nanohoops [2]CPTN, [3]CPTN, and [3]CPTA (N for 1,4-naphthyl; A for 9,10-anthracenyl) have been prepared using the same strategy, and [2]CPTN has been shown to bind C₇₀ 5 times more strongly than [2]CPT. Our failed synthesis of [2]CPTA highlights a limitation of the experimental approach most commonly used to prepare strained nanohoops, because in this particular case the sum of aromatization energies no longer outweighs the buildup of ring strain in the final reaction step (DFT calculations). These results indicate that forcing ring strain onto organic semiconductors is a viable strategy to fundamentally influence both optoelectronic and supramolecular properties

    Lack of Detection of Toxoplasma gondii in Pipistrellus spp. Bats from Densely Cat-Populated Areas of NE Spain

    Get PDF
    Toxoplasma gondii infection in healthy animals is often asymptomatic. However, some species with little history of contact with the parasite, such as marsupials and New World primates, present high mortality rates after infection. Despite its potential conservation concern, T. gondii infection in insectivorous bats has received little attention, and its impact on bat populations’ health is unknown. To assess the putative role of insectivorous bats in the cycle of T. gondii, samples of three species of bats (Pipistrellus pipistrellus, P. pygmaeus and P. kuhlii) collected between 2019 and 2021 in NE Spain were tested for the presence of the parasite using a qPCR. All tissues resulted negative (0.0% prevalence with 95% CI: [0.0–2.6]) for the presence of T. gondii. Unlike previous studies on insectivorous bats from Europe, Asia and America, the present study suggests that Pipistrellus spp. bats do not play a significant role in the epidemiology of T. gondii in NE Spain. Further studies are encouraged to elucidate both the epidemiology of T. gondii and its potential impact on the health of microchiropteran species in Europe.info:eu-repo/semantics/publishedVersio

    Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development

    Get PDF
    The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17ÎČ10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species

    Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems

    Get PDF
    Type 2 Diabetes (T2D) is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different types of functional interaction data, such as direct protein-protein interactions, co-expression analyses, and metabolic and signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN) network, which highlights 286 genes as candidate functional linkers between these two systems. The results of internal gene expression analysis of three independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549), including three already validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting glucose levels according to MAGIC genome wide meta-analysis (p = 8.12×10(-5)). This study highlights the potential of combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and related variants that increase vulnerability to complex diseases

    The K2-ESPRINT Project II: Spectroscopic follow-up of three exoplanet systems from Campaign 1 of K2

    Get PDF
    We report on Doppler observations of three transiting planet candidates that were detected during Campaign 1 of the K2 mission. The Doppler observations were conducted with FIES, HARPS-N, and HARPS. We measure the mass of EPIC 201546283b, and provide constraints and upper limits for EPIC 201295312b and EPIC 201577035b. EPIC 201546283b is a warm Neptune orbiting its host star in 6.77 days and has a radius of 4.45_(-0.33)^(+0.33)R_⊕ and a mass of 29.1_(-7.4)^(+7.5)M_⊕, which leads to a mean density of 1.80_(-0.55)^(+0.70) cm^(-3). EPIC 201295312b is smaller than Neptune with an orbital period of 5.66 days, a radius of 2.75_(-0.22^)(0.24)R_⊕, and we constrain the mass to be below 12 M_⊕ at 95% confidence. We also find a long-term trend indicative of another body in the system. EPIC 201577035b, which was previously confirmed as the planet K2-10b, is smaller than Neptune, orbiting its host star in 19.3 days, with a radius of 3.84_(-0.34)^(+0.35)R_⊕. We determine its mass to be 27_(-16)^(+17)M_⊕, with a 95% confidence upper limit at 57M_⊕, and a mean density of 2.6_(-1.6)^(+2.1)g cm^(-3). These measurements join the relatively small collection of planets smaller than Neptune with measurements or constraints of the mean density. Our code for performing K2 photometry and detecting planetary transits is now publicly available
    • 

    corecore