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ABSTRACT: Small π-conjugated nanohoops are difficult to prepare, but offer an excellent platform for studying the interplay be-

tween strain and optoelectronic properties and increasingly, these shape-persistent macrocycles find uses in host-guest chemistry and 

self-assembly. We report the synthesis of a new family of radially π-conjugated porphyrinylene/phenylene nanohoops. The strain 

energy in the smallest nanohoop [2]CPT is approximately 54 kcal mol-1, which results in a narrowed HOMO-LUMO gap and a red 

shift in the visible part of the absorption spectrum. Due to its high degree of preorganization and a diameter of ca. 13 Å, [2]CPT was 

found to accommodate C60 with a binding affinity exceeding 108 M-1 despite the fullerene not fully entering the cavity of the host (X-

Ray crystallography). Moreover, the π-extended nanohoops [2]CPTN , [3]CPTN and [3]CPTA (N for 1,4-naphthyl; A for 9,10-

anthracenyl) have been prepared using the same strategy, and [2]CPTN has been shown to bind C70 five times more strongly than 

[2]CPT. Our failed synthesis of [2]CPTA highlights a limitation of the experimental approach most commonly used to prepare 

strained nanohoops, because in this particular case the sum of aromatization energies no longer outweighs the buildup of ring strain 

in the final reaction step (DFT calculations). These results indicate that forcing ring strain onto organic semiconductors is a viable 

strategy to fundamentally influence both optoelectronic and supramolecular properties. 

INTRODUCTION 

Carbon-rich “nanohoops” exhibiting radial π-conjugation 

(Figure 1), such as the [n]cycloparaphenylenes, have attracted 

much attention recently due to their challenging synthesis, in-

triguing optoelectronic properties and their vast potential in su-

pramolecular chemistry.1 Macrocycles containing porphyrins 

have been pursued for several decades,2 leading to important 

advances in host-guest chemistry3 and catalysis.4 Most reported 

compounds, however, do not exhibit an uninterrupted conjuga-

tion pathway or significant ring strain. An exception regarding 

conjugation is Anderson’s work on large porphyrin na-

norings,1b,5 which has produced new concepts of template syn-

thesis6 and spectacular insights into global (anti)aromaticity7 as 

well as charge delocalization.8 The smallest nanoring synthe-

sized by Anderson features five porphyrin moieties linked by 

butadiyne spacers that appear to bear most of the moderate ring 

strain.9 Osuka’s porphyrinelene/phenylene hybrids featuring 

three to six porphyrins within the macrocycle are subject to sig-

nificant strain energies (up to 49 kcal mol-1). However, with a 

diameter of 16 Å, the smallest nanohoop of this series is still too 

large to effectively accommodate fullerenes.10 

Figure 1. Radial π-conjugated porphyrinylene/phenylene nano-

hoop. 

We wondered whether a smaller variant of Osuka’s macro-

cycles would be accessible based on recent progress in the syn-

thesis of highly strained macrocycles.11 Specifi-



 

 
Figure 2. Synthesis of the [n]CPT. (a) Reaction conditions: (i) Pd(PPh3)4, Cs2CO3, pyridine, toluene, 125 ⁰ C, 15 h. (ii) TBAF, THF, RT, 1 h. (iii) 

H2SnCl4, 0 ⁰ C  RT, 12 h, ([2]CPT 10%, [3]CPT 8%  3-step yield) . (b) Partial 1H NMR spectra (CDCl3, 298 K, 400 MHz), [2]CPT-OTES, 

[2]CPT-OH, [2]CPT, [2]CPTC60 and [3]CPT. (c) UV-vis absorption spectra of 2 (black) [2]CPT-OH (light red) [2]CPT (light green) and [3]CPT 

(dark red). 

cally, we anticipated that [2]cyclo-5,15-porphrinylene-4,4,4-

terphenyl ([2]CPT) would have a very similar diameter to 

[10]cycloparaphenylene ([10]CPP), which has recently been 

shown to be an excellent host for C60,
12 enabling studies on non-

covalent charge transfer13 and the synthesis of [2]rotaxanes.14 

Herein we report that [2]CPT as highly strained porphy-

rinylene/phenylene nanohoop can be synthesized in seven lin-

ear steps. Although the calculated15 ring strain of 54 kcal mol-1 

in this compound is not as high as in the smallest CPP ([5]CPP: 

119 kcal mol-1),16 we observed a strong influence of strain on 

the absorption and in contrast to the CPPs the bathochromic 

shift affects the visible part of the spectrum. We also prepared 

several π-extended analogues of [n]CPT and found that mem-

bers of the [2]CPT nanohoop family are extremely effective re-

ceptors for C60 and C70 (e.g. Figure 1). 

RESULTS AND DISCUSSION 

Synthesis of Precursors. The key steps in the synthesis of 

[n]CPT are shown in Figure 2a. Diboronate 1 and meso-por-

phyrin 2 are accessible on a multigram scale in four and three 

linear steps, respectively. Under standard conditions for Su-

zuki-Miyaura cross-coupling (125 C, toluene, Cs2CO3), we 

found that the crucial ring-closing step only gave minuscule 

quantities of the desired small nanohoop [2]CPT-OTES.  In a 

parameter optimization study for this reaction step, we discov-

ered that the addition of pyridine (100 equiv.) led to a signifi-

cantly increased yield of the desired macrocycle and an unex-

pected ratio between [2]CPT-OTES and [3]CPT-OTES of ca. 

2:1. We initially attributed this effect to the binding of pyridine 

to the nickel center, but based on the Ni−Ni distance of 7.4 Å in 

the solid state structure of [2]CPT-OH (vide infra), we believe 

that a π-π template effect between electron-deficient pyridine 

and the electron-rich porphyrins may be at work. As shown in 

Figure 2b, compound [2]CPT-OTES exhibits a broad peak in 

the 1H NMR spectrum for the signal corresponding to the tert-

butyl groups. Variable-temperature (VT) NMR spectroscopy 

and line-shape analysis allowed us to determine the kinetic pa-

rameters (e.g. G‡
298 = 58.9 kJ mol-1, Figure S3-5) for this pro-

cess, which we attribute to hindered di-(tert-butyl)phenyl rota-

tion due to steric clash between two tert-butyl groups on one 

face of the macrocycle (see Figure 3a, right hand side). 

The isolated compounds [n]CPT-OTES underwent a smooth 

transformation into the corresponding alcohols [n]CPT-OH 

upon addition of a suitable fluoride reagent. Typically, we con-

verted these intermediates immediately into the target com-

pounds, but in one instance we attempted to purify compound 

[2]CPT-OH and were able to grow single crystals suitable for 

X-Ray crystallography. The solid state structure (Figure 2a) of 

this compound reveals a rectangular (slightly oval) shape with 

a Ni−Ni distance of 7.4 Å and two porphyrin macrocycles with 

a “ruffle” geometry and an offset angle of 80°, which likely 

helps avoiding an unfavorable interaction between two tert-bu-

tyl groups. Because this compound could be of interest as a bi-

metallic catalyst,17 it is worth noting that in this solid state struc-

ture the cavity is populated by (masked) solvent molecules and 

that DFT studies point towards negligible ring strain (Table 1), 

as well as the ability to adopt a variety of conformations, in-

cluding some with small cavity volumes (Figure S39). 

Nanohoop Synthesis and Characterization. We found that 

the final aromatization step (Figure 2a) required rigorously op-

timized reaction conditions, which is presumably as a result 

 



 

Table 1. Selected properties of [2]CPT-OH, [3]CPT,[2]CPTN, [3]CPTN and [3]CPTA. 

Compound Strain Energya 

[kcal mol-1] 

max (S, Q)b 

[nm] 

max
b 

[L·mol-1·cm-1] 

E0
Ox1 ( E0

Ox2) c 

[V] 

E0
red1 ( E0

red2) c 

[V] 

HOMOd 

[eV] 

Eg
e 

[eV] 

[2]CPT-OH 0.8 416, 535, － 4.3  105 0.54 (－) -1.80 (－) -5.46 2.07 

[2]CPT 54.3 446, 575, 617 3.4  105 0.32 (0.68) -1.57 (-1.86) -5.32 1.66 

[3]CPT 34.1 432, 552, 590 4.0  105 0.45 (0.84) -1.77 (-1.98) -5.43 1.95 

[2]CPTN 

[3]CPTN 

[3]CPTA 

－ 

－ 

－ 

442, 567, 610 

430, 550, 589 

428, 548, 585 

2.7  105 

4.0  105 

6.2  105 

0.34 (0.60) 

0.44 (0.73) 

0.49 (0.87) 

-1.69 (-1.92) 

-1.79 (-2.04) 

-1.83 (-2.10) 

-5.33 

-5.44 

-5.45 

1.78 

2.04 

2.37 

a Homodesmotic DFT calculations (B3LYP+D3/def2-TZVP); b Measured in CH2Cl2; c CH2Cl2, TBAPF6 (0.1 M), 295 K, V = 100 mV·s-1, vs. Fc+/Fc; 
d Set Fc+/Fc EHOMO = -5.1 eV; e Calculated by the difference of the values of Eonset

red1 and Eonset
ox1. 

of the large amount of ring strain generated and the risk of por-

phyrin.degradation.10 Only when we used the mild reagent 

H2SnCl4
11d, were we able to isolate compounds [2]CPT and 

[3]CPT in reasonable three-step yields of 10% and 6%, respec-

tively. With pure compounds [2]CPT-OH, [2]CPT and 

[3]CPT in hands, we proceeded to compare key properties by 

NMR and UV-Vis spectroscopy, cyclic voltammetry and DFT 

calculations (Table 1). The 1H NMR spectra (Figure 2b) indi-

cate that in contrast to the rectangular precursor (vide supra) the 

rotation of di-(tert-butyl)phenyl groups is not hindered at room 

temperature in both [2]CPT and [3]CPT, which is likely a con-

sequence of the strain-induced conical arrangement of these 

groups. Other notable features in the NMR spectra include sig-

nificant differences in the chemical shifts of aromatic protons 

(red in Figure 2b) and two sets of signals for pyrrole protons 

(“F” and “E”), pointing towards a “ruffle” rather than “saddle” 

geometry of the porphyrin moieties, which are bent out-of-

plane by ca. 35° (Cmeso−Ni−Cmeso). 

Figure 3. X-ray crystal structure of [2]CPT: (a) ORTEP drawing with 

30% probability. (b) Top view with distances and dihedral angles la-

beled. (c) Packing in the unit cell. Hydrogen atoms are omitted for clar-

ity. (d) Frontier molecular orbitals of [2]CPT calculated at the 

B3LYP/def2- TZVP level of theory (isovalue, 0.018).  

A solid state structure of [2]CPT could be obtained by syn-

chrotron X-ray diffraction (Figure 3). Single crystals of [2]CPT 

were prepared by slow evaporation of a solution in CH3CN and 

CHCl3 (1:1). As shown in Figure 3ab, [2]CPT has an oval shape 

(approximately C2 symmetry) with an average diameter of ca. 

13.2 Å. The dihedral angle between neighboring benzene rings 

is 53 and it seems reasonable to assume that the molecule 

avoids excessive ring strain by placing the two face to face por-

phyrins out of horizontal line. The packing diagram reveals ev-

idence for intermolecular π-π interactions between the ter-

phenyl bridges (3.5 Å, Figure 3c), which leads to “sideway” 

stacking of the molecules. In the third dimension, this packing 

leads to uniform pores with “walls” composed nearly exclu-

sively from sp2–hybridized carbon atoms, which could be of in-

terest for future porous energy storage materials.18 

Optoelectronic Properties. While the unstrained precursor 

[2]CPT-OH exhibits an absorption spectrum typical for 

tetraaryl nickel porphyrins, we observed red shifted Soret as 

well as Q bands and an inversion in the intensity of the Q bands 

for the strained macrocycles [3]CPT and [2]CPT. Of note, 

strain-induced red-shifts are limited to the emission spectra and 

the ultraviolet part of the spectrum for the related [n]CPPs.1a 

Compounds [3]CPT and [2]CPT were found to be essentially 

non-fluorescent, which is typical for Ni porphyrins however.19 

Data gathered independently by cyclic voltammetry (Figures 

S26) and DFT calculations (Figures S46-S48) indicates that the 

observed bathochromic shifts in the absorption spectrum are to 

a narrowing of the HOMO/LUMO gap with increasing ring 

strain. DFT calculations of the frontier molecular orbitals reveal 

that for both the HOMO and the LUMO the orbital coefficients 

are delocalized over the entire ring, yet dominant on the por-

phyrin moieties (Figure 3d). These results suggest that the in-

corporation of organic semiconductor motifs into nanohoops is 

a viable strategy to systematically tune the band gaps and ab-

sorption maxima.20  

Fullerene Complexation. We next turned our attention to 

the inclusion of fullerene guests into the small nanohoop 

[2]CPT. As shown in Figure 2b, addition of one equivalent C60 

led to dramatic changes in all signal sets of the 1H NMR spec-

trum as well as a splitting of the pyrrole signals. By means of 

UV-Vis titrations in toluene (Figure 4a; carried out in triplicate), 

we were able to determine binding constants of ca. 3108 M-1 

for C60 and ca. 2107 M-1 for C70. It is worth noting that the 

strength of fullerene binding is so high that in the MALDI mass 

spectrum, where non-covalent interactions are typically broken 

during ionization, the signal for the radical cation of complex 

[2]CPTC60 is of the same intensity as that for the parent com-

pound [2]CPT (Figure 4b). MS/MS experiments revealed that 

the nanohoop carries the positive charge in the radical cations 

of the complexes [2]CPT⊃C60/70 (Figures S51, S52). Collision-

induced dissociation experiments at variable collision energies 

allowed direct comparison of gas phase relative dissociation en-

ergies of fullerene complexes with a monomeric porphyrin (dis-

sociation onset at Ecom = 0.15 eV), [10]CPP (onset at Ecom = 0.49 



 

eV) and [2]CPT, which in the gas phase binds the larger fuller-

ene C70 slightly more strongly than C60 (onset at Ecom = 0.78 and 

Ecom = 0.76 eV, respectively). 

Figure 4. (a) UV-vis titration of [2]CPT with C60 (0-2.5 equiv) in tol-

uene (fit based on 1:1 model). (b) MALDI mass spectrum of 

[2]CPTC60, (inset shows the experimental and calculated isotopic 

pattern). (c) Energy-dependent fragmentation experiments for selected 

fullerene complexes, each fitted with a sigmoidal Boltzmann function 

(see SI section 8 for details). 

Single crystals of the [2]CPTC60 complex were grown by 

slow diffusion of CH3CN into a mixture of CHCl3 and 1,2-di-

chlorobenzene (1:1). The solid state structure clearly shows that 

a complex between [2]CPT and C60 with 1:1 stoichiometry is 

present. As shown in Figure 5a, the encapsulation of C60 is 

clearly facilitate by convex-concave π-π interactions (3.4 Å~3.7 

Å) and induces the nanohoop to adopt a more spherical shape. 

The dihedral angle between neighboring benzene rings de-

creases to 48, lending further support to the presence of π-π 

interactions between terphenyl bridges and C60. According to 

the solid state structure, the 1H NMR data and DFT calculations 

(Figure S40), the diameter of [2]CPT is slightly too small for a 

“perfect” (symmetric) encapsulation of C60, which results in 

“off- center” binding with an offset of 1.9 Å.  

The complex between [2]CPT with C70 was studied using 

DFT calculations, because high-quality single crystals could not 

be obtained in this particular case. The calculations once more 

indicate that the fullerene cannot fully enter into the cavity with 

an offset distance of 2.7 Å, which as expected is larger than the 

corresponding offset for C60 (Figure S41). This finding provides 

an evident opportunity to design related fullerene receptors with 

even higher binding affinities (vide infra). For both the 

[2]CPTC60 and [2]CPTC70 complexes, the HOMO orbital 

coefficients are localized exclusively on porphyrin moieties, 

while the LUMO orbital coefficients are localized predomi-

nately, but not exclusively on the fullerene (Figure 5d, S49). 

Hence, the DFT calculations suggest that charge transfer plays 

a role in the non-covalent complexes, which is in agreement 

with the bathochromic shifts observed during the host-guest ti-

trations (Figure 4a).    

 

Figure 5. X-ray crystal structure of [2]CPTC60: (a) ORTEP drawing 

with 30% probability. (b) Top view with distances and dihedral angles 

labeled. (c) Packing in the unit cell. Hydrogen atoms are omitted for 

clarity. (d) Frontier molecular orbitals of [2]CPTC60 calculated at the 

B3LYP/ def2- TZVP level of theory (isovalue, 0.018).  

π-Extension of Nanohoops. Several π-extended CPPs, 

which can be considered intermediate structures on the way 

from CPPs to armchair carbon nanotube have been prepared in 

recent years.21-23 We wondered whether the inclusion of naph-

thalene or anthracene-moieties would be possible within the 

[n]CPT architecture. To this end, start our synthesis from com-

mercially available α-naphthoquinone and anthraquinone to 

synthesize the diboronate precursors on a multigram scale. 

Macrocyclic compounds [n]CPTN-OTES and [n]CPTA-

OTES (n = 2, 3) were prepared successfully using the same Su-

zuki-Miyaura cross-coupling conditions with comparable re-

sults to the parent system. The porphyrin macrocycles could 

also be transformed smoothly into the corresponding alcohols 

[n]CPTN-OH and [n]CPTA-OH by treatment with tetrabu-

tylammonium fluoride (TBAF). Strong deviations from the par-

ent system were found in the final step of the synthesis. In case 

of  the naphthyl system, we found that for the small-ring pre-

cursor [2]CPTN-OH the final aromatization reaction only pro-

ceeded at 70 C and gave only 32% yield of [2]CPTN after 12 

hours, whereas the larger [3]CPTN-OH could be easily trans-

formed into [3]CPTN in 82% yield at room temperature (6 

hours). In case of the anthracenyl system, we failed to convert 

the small-ring precursor [2]CPTA-OH into [2]CPTA (Figure 

S24) even at elevated temperature, which indicates that the aro-

matization energy. This interpretation is not only in agreement 

with Clar’s “sectet” theory,24 but was corroborated by DFT cal-

culations, which indeed show that there is a difference of about 

20 kcal/mol (2 moieties per ring) in the aromatization enthalpy 

gain between neighbouring compounds in this series (Figure 



 

6b). Hence, by moving form phenyl (reaction efficient at room 

temperature) to naphthyl (reaction inefficient at elevated tem-

perature) to anthracenyl (reaction impossible), we seem to have 

probed the limitations of the aromatization-vs.-strain-genera-

tion approach that is so commonly used in this area.25 Of note, 

we can rule out an electronic, and with some confidence also a 

steric effect, because the larger precursor [3]CPTA-OH could 

be converted to [3]CPTA in nearly quantitative yield under 

mild conditions. 

The absorption spectrum of the two naphthyl-bridged nano-

hoops ([2]CPTN, [3]CPTN) are similar to the corresponding 

[n]CPT nanohoops, but the Soret-band and Q-band absorptions 

are slightly blue-shifted (Table 1, Figure 6c). The [3]CPTA ab-

sorption maximum was further blue-shifted (428 nm , Table 1), 

but the most striking observation for this compound is the high 

molar absorption coefficient of the Soret band ( = 6.2105 cm-

1 M-1), which significantly exceeds those determined for all 

other nanohoops. Differential-pulse voltammetry and cyclic 

voltammetry experiments of [n]CPTN and [3]CPTA (Figure 

S26) revealed that these nanohoops exhibit a slightly increased 

HOMO/LUMO gap when compared to their CPT analogues.23a 

Figure 6. (a) Synthesis of the [n]CPTN and [n]CPTA: (i) H2SnCl4, 

RT70 C, THF, 12 h. (ii) H2SnCl4, RT, 12 h ([3]CPTN). NaI, 

NaH2PO2, AcOH, 100 C, 6 h ([3]CPTA). (b) Relative differences in 

the aromatization enthalpies as calculated at the B3LYP+D3/def2-

TZVPP level of theory. (c) UV-vis absorption spectra of [2]CPTN-OH 

(light red) [2]CPTN (light green) [3]CPTN (blue) and [3]CPTA (dark 

red).  

Depending on the rotation rate of the phenyl-naphthyl C-C 

bonds, the π-extended nanohoops of type [n]CPTN can in prin-

ciple exist as two different stereoisomers, which is why we con-

ducted an NMR study to shed light on this issue. The 1H NMR 

spectra of [2]CPTN and [3]CPTN showed only one set of sig-

nals at room temperature, indicating either fast rotation of the 

C−C bonds or the presence of only one stereoisomer. Conclu-

sive evidence to this end was obtained by variable temperature 

NMR (VT-NMR). The t-Bu group signal of [2]CPT, [2]CPTN 

and [3]CPTN splits into two peaks at low temperature (ca. 240 

K, 230 K and 250 K, respectively), which we attribute to the 

slow rotation of the porphyrin-(tBu)2-phenyl C-C bond (see 

Figures S9, S16，S20, S21 for VT-NMR spectra and Eyring 

analyses). Evidence for a restricted rotation of the naphthalene 

units within the nanohoops was not observed over the investi-

gated temperature range (minimum temperature: 250 K).  

To test the limits of fullerene affinity in these new nanohoop 

architectures, we studied the thermodynamics of 

[2]CPTNfullerene complexes. UV-Vis titrations revealed an 

association constant of 3.0108 M-1 (toluene) for [2]CPTNC60 

(Figure S32), which is identical within error with the 

[2]CPTC60 complex and indicates that the π–extension of the 

nanohoop seemingly does not improve the “contact area” be-

tween C60 and the nanohoop. In contrast, when the 

[2]CPTNC70 complex was studied in the same way, an in-

crease of the binding constant (1.0108 M-1, toluene) by a factor 

of five was observed in comparison to the parent system (Figure 

7c). This finding can be rationalized by the larger VdW surface 

of C70, and indeed this hypothesis was supported by DFT calcu-

lations (Figure 7b). 

Figure 7. (a) Experimental (left) and simulated (right) 1H NMR spectra 

of [3]CPTN at various temperatures. (b) Optimized geometries of 

[2]CPTNC70 obtained by DFT calculations at the PBE+D3 level of 

theory, side chains of [2]CPTN omitted for clarity. (c) UV-vis titration 

of [2]CPTN with C70 (0-1.9 equiv) in toluene (fit based on 1:1 model).  



 

CONCLUSIONS 

In conclusion, we developed a concise synthesis of a series 

of strained porphyrin macrocycles, which due to their unique 

molecular design offer opportunities for uses in bimetallic ca-

talysis and crystal engineering. The two nanohoops [2]CPT and 

[2]CPTN can be considered porphyrinogenic equivalents to 

[10]CPP, albeit with ca. 100-fold increased affinity for fuller-

enes, which may prove useful for the regioselective synthesis or 

separation of fullerene bisadducts14,26 and in photoelectroactive 

devices27. We also observed unusual optoelectronic properties, 

most importantly, a strain-induced red-shift of absorption in the 

visible range of the spectrum, which may inspire further studies 

on the bending of organic semiconductors28 or molecular 

switches.29 
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