387 research outputs found
Holographic enhanced remote sensing system
The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site
Resolution limits in practical digital holographic systems
We examine some fundamental theoretical limits on the ability
of practical digital holography DH systems to resolve detail in an
image. Unlike conventional diffraction-limited imaging systems, where a
projected image of the limiting aperture is used to define the system
performance, there are at least three major effects that determine the
performance of a DH system: i The spacing between adjacent pixels on
the CCD, ii an averaging effect introduced by the finite size of these
pixels, and iii the finite extent of the camera face itself. Using a theoretical
model, we define a single expression that accounts for all these
physical effects. With this model, we explore several different DH recording
techniques: off-axis and inline, considering both the dc terms, as well
as the real and twin images that are features of the holographic recording
process. Our analysis shows that the imaging operation is shift variant
and we demonstrate this using a simple example. We examine how
our theoretical model can be used to optimize CCD design for lensless
DH capture. We present a series of experimental results to confirm the
validity of our theoretical model, demonstrating recovery of super-
Nyquist frequencies for the first time
Resolution limits in practical digital holographic systems
We examine some fundamental theoretical limits on the ability
of practical digital holography DH systems to resolve detail in an
image. Unlike conventional diffraction-limited imaging systems, where a
projected image of the limiting aperture is used to define the system
performance, there are at least three major effects that determine the
performance of a DH system: i The spacing between adjacent pixels on
the CCD, ii an averaging effect introduced by the finite size of these
pixels, and iii the finite extent of the camera face itself. Using a theoretical
model, we define a single expression that accounts for all these
physical effects. With this model, we explore several different DH recording
techniques: off-axis and inline, considering both the dc terms, as well
as the real and twin images that are features of the holographic recording
process. Our analysis shows that the imaging operation is shift variant
and we demonstrate this using a simple example. We examine how
our theoretical model can be used to optimize CCD design for lensless
DH capture. We present a series of experimental results to confirm the
validity of our theoretical model, demonstrating recovery of super-
Nyquist frequencies for the first time
Fine Structure in the Circumstellar Environment of a Young, Solar-like Star: the Unique Eclipses of KH 15D
Results of an international campaign to photometrically monitor the unique
pre-main sequence eclipsing object KH 15D are reported. An updated ephemeris
for the eclipse is derived that incorporates a slightly revised period of 48.36
d. There is some evidence that the orbital period is actually twice that value,
with two eclipses occurring per cycle. The extraordinary depth (~3.5 mag) and
duration (~18 days) of the eclipse indicate that it is caused by circumstellar
matter, presumably the inner portion of a disk. The eclipse has continued to
lengthen with time and the central brightness reversals are not as extreme as
they once were. V-R and V-I colors indicate that the system is slightly bluer
near minimum light. Ingress and egress are remarkably well modeled by the
passage of a knife-edge across a limb-darkened star. Possible models for the
system are briefly discussed.Comment: 19 pages, 5 figure
Predicting the effects of biochar on volatile petroleum hydrocarbon biodegradation and emanation from soil: a bacterial community finger-print analysis inferred modelling approach
We investigated the response of the dominant bacterial taxa in gravelly sand to the addition of biochar and/or mixtures of volatile petroleum hydrocarbons (VPHs) using denaturing gradient gel electrophoresis (DGGE) and sequencing of cut bands. Biochar addition alone had only weak effects on the soil bacterial community composition in batch study samples, while VPH addition had strong effects. Indirect effects of biochar on soil bacterial communities were apparent in column study samples, where biochar-enhanced sorption affected VPH spreading. Following VPH addition, cell abundance increased by no more than a factor of 2 and several Pseudomonas spp. became dominant in soil with and without biochar. We present a VPH fate model that considers soil bacterial biomass dynamics and a nutrient limited soil biomass carrying capacity. The model simulates an apparent lag phase before the onset of a brief period of intensive VPH biodegradation and biomass growth, which is followed by substantially slower VPH biodegradation, when nitrogen needs to be recycled between decaying and newly formed biomass. If biomass growth is limited by a factor other than the organic pollutant bioavailability, biochar amendment may enhance VPH attenuation in between a VPH source below ground and the atmosphere by reducing the risk of overloading the soil's biodegradation capacity
Restrictive ID policies: implications for health equity
We wish to thank Synod Community Services for their critical work to develop, support, and implement a local government-issued ID in Washtenaw County, MI. We also thank Yousef Rabhi of the Michigan House of Representatives and Janelle Fa'aola of the Washtenaw ID Task Force, Lawrence Kestenbaum of the Washtenaw County Clerk's Office, Sherriff Jerry Clayton of the Washtenaw County Sherriff's Office, and the Washtenaw ID Task Force for their tireless commitment to developing and supporting the successful implementation of the Washtenaw ID. Additionally, we thank Vicenta Vargas and Skye Hillier for their contributions to the Washtenaw ID evaluation. We thank the Curtis Center for Research and Evaluation at the University of Michigan School of Social Work, the National Center for Institutional Diversity at the University of Michigan, and the University of California-Irvine Department of Chicano/Latino Studies and Program in Public Health for their support of the Washtenaw ID community-academic research partnership. Finally, we thank the reviewers for their helpful comments on earlier drafts of this manuscript. (Curtis Center for Research and Evaluation at the University of Michigan School of Social Work; National Center for Institutional Diversity at the University of Michigan; University of California-Irvine Department of Chicano/Latino Studies; Program in Public Health)https://link.springer.com/content/pdf/10.1007/s10903-017-0579-3.pdfPublished versio
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
Influence of vitamin D supplementation by sunlight or oral D3 on exercise performance
Purpose: To determine the relationship between vitamin D status and exercise performance in a large, prospective cohort study of young men and women across seasons (Study-1). Then, in a randomized, placebo-controlled trial, to investigate the effects on exercise performance of achieving vitamin D sufficiency (serum 25(OH)D ≥ 50 nmol·L-1) by a unique comparison of safe, simulated-sunlight and oral vitamin D3 supplementation in wintertime (Study-2). Methods: In Study-1, we determined 25(OH)D relationship with exercise performance in 967 military recruits. In Study-2, 137 men received either placebo, simulated-sunlight (1.3x standard erythemal dose in T-shirt and shorts, three-times-per-week for 4-weeks and then once-per-week for 8-weeks) or oral vitamin D3 (1,000 IU[BULLET OPERATOR]day-1 for 4-weeks and then 400 IU[BULLET OPERATOR]day-1 for 8-weeks). We measured serum 25(OH)D by LC-MS/MS and endurance, strength and power by 1.5-mile run, maximum-dynamic-lift and vertical jump, respectively. Results: In Study-1, only 9% of men and 36% of women were vitamin D sufficient during wintertime. After controlling for body composition, smoking and season, 25(OH)D was positively associated with endurance performance (P ≤ 0.01, [INCREMENT]R2 = 0.03–0.06, small f2 effect sizes): 1.5-mile run time was ~half-a-second faster for every 1 nmol·L-1 increase in 25(OH)D. No significant effects on strength or power emerged (P > 0.05). In Study-2, safe simulated-sunlight and oral vitamin D3 supplementation were similarly effective in achieving vitamin D sufficiency in almost all (97%); however, this did not improve exercise performance (P > 0.05). Conclusion: Vitamin D status was associated with endurance performance but not strength or power in a prospective cohort study. Achieving vitamin D sufficiency via safe, simulated summer sunlight or oral vitamin D3 supplementation did not improve exercise performance in a randomized-controlled trial
Validating and optimising mismatch tolerance of Doppler backscattering measurements with the beam model
We use the beam model of Doppler backscattering (DBS), which was previously
derived from beam tracing and the reciprocity theorem, to shed light on
mismatch attenuation. This attenuation of the backscattered signal occurs when
the wavevector of the probe beam's electric field is not in the plane
perpendicular to the magnetic field. Correcting for this effect is important
for determining the amplitude of the actual density fluctuations. Previous
preliminary comparisons between the model and Mega-Ampere Spherical Tokamak
(MAST) plasmas were promising. In this work, we quantitatively account for this
effect on DIII-D, a conventional tokamak. We compare the predicted and measured
mismatch attenuation in various DIII-D, MAST, and MAST-U plasmas, showing that
the beam model is applicable in a wide variety of situations. Finally, we
performed a preliminary parameter sweep and found that the mismatch tolerance
can be improved by optimising the probe beam's width and curvature at launch.
This is potentially a design consideration for new DBS systems
Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS
We present a tomographic cosmological weak lensing analysis of the HST COSMOS
Survey. Applying our lensing-optimized data reduction, principal component
interpolation for the ACS PSF, and improved modelling of charge-transfer
inefficiency, we measure a lensing signal which is consistent with pure
gravitational modes and no significant shape systematics. We carefully estimate
the statistical uncertainty from simulated COSMOS-like fields obtained from
ray-tracing through the Millennium Simulation. We test our pipeline on
simulated space-based data, recalibrate non-linear power spectrum corrections
using the ray-tracing, employ photometric redshifts to reduce potential
contamination by intrinsic galaxy alignments, and marginalize over systematic
uncertainties. We find that the lensing signal scales with redshift as expected
from General Relativity for a concordance LCDM cosmology, including the full
cross-correlations between different redshift bins. For a flat LCDM cosmology,
we measure sigma_8(Omega_m/0.3)^0.51=0.75+-0.08 from lensing, in perfect
agreement with WMAP-5, yielding joint constraints Omega_m=0.266+0.025-0.023,
sigma_8=0.802+0.028-0.029 (all 68% conf.). Dropping the assumption of flatness
and using HST Key Project and BBN priors only, we find a negative deceleration
parameter q_0 at 94.3% conf. from the tomographic lensing analysis, providing
independent evidence for the accelerated expansion of the Universe. For a flat
wCDM cosmology and prior w in [-2,0], we obtain w<-0.41 (90% conf.). Our dark
energy constraints are still relatively weak solely due to the limited area of
COSMOS. However, they provide an important demonstration for the usefulness of
tomographic weak lensing measurements from space. (abridged)Comment: 26 pages, 25 figures, matches version accepted for publication by
Astronomy and Astrophysic
- …