78 research outputs found

    Brief Screening of Vascular Cognitive Impairment in Patients With Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy Without Dementia.

    Get PDF
    BACKGROUND AND PURPOSE: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic form of cerebral small vessel disease leading to early-onset stroke and dementia, with younger patients frequently showing subclinical deficits in cognition. At present, there are no targeted cognitive screening measures for this population. However, the Brief Memory and Executive Test (BMET) and the Montreal Cognitive Assessment (MoCA) have shown utility in detecting cognitive impairment in sporadic small vessel disease. This study assesses the BMET and the MoCA as clinical tools for detecting mild cognitive deficits in CADASIL. METHODS: Sixty-six prospectively recruited patients with CADASIL, and 66 matched controls completed the BMET, with a subset of these also completing the MoCA. Receiver operating characteristic curves were calculated to examine the sensitivity and specificity of clinical cutoffs for the detection of vascular cognitive impairment and reduced activities of daily living. RESULTS: Patients with CADASIL showed more cognitive impairment overall and were poorer on both executive/processing and memory indices of the BMET relative to controls. The BMET showed good accuracy in predicting vascular cognitive impairment (85% sensitivity and 84% specificity) and impaired instrumental activities of daily living (92% sensitivity and 77% specificity). The MoCA also showed good predictive validity for vascular cognitive impairment (80% sensitivity and 78% specificity) and instrumental activities of daily living (75% sensitivity and 76% specificity). The most important background predictor of vascular cognitive impairment was a history of stroke. CONCLUSIONS: The results indicate that the BMET and the MoCA are clinically useful and sensitive screening measures for early cognitive impairment in patients with CADASIL.Stroke Association (Grant ID: TSA2008/10), British Heart Foundation (Grant ID: PG/13/30/30005), Stroke Association/British Heart Foundation (Grant ID: TSA BHF 2010/01), Agency for Science, Technology and Research, Singapore, National Institute for Health Research (Senior Investigator award), Cambridge University Hospital Comprehensive National Institute for Health Research Biomedical Research UnitThis is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1161/STROKEAHA.116.01376

    Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones

    Get PDF
    High-grade serous ovarian carcinoma (HGSOC) is genetically unstable and characterised by the presence of subclones with distinct genotypes. Intratumoural heterogeneity is linked to recurrence, chemotherapy resistance, and poor prognosis. Here, we use spatial transcriptomics to identify HGSOC subclones and study their association with infiltrating cell populations. Visium spatial transcriptomics reveals multiple tumour subclones with different copy number alterations present within individual tumour sections. These subclones differentially express various ligands and receptors and are predicted to differentially associate with different stromal and immune cell populations. In one sample, CosMx single molecule imaging reveals subclones differentially associating with immune cell populations, fibroblasts, and endothelial cells. Cell-to-cell communication analysis identifies subclone-specific signalling to stromal and immune cells and multiple subclone-specific autocrine loops. Our study highlights the high degree of subclonal heterogeneity in HGSOC and suggests that subclone-specific ligand and receptor expression patterns likely modulate how HGSOC cells interact with their local microenvironment

    Microbial exposure during early human development primes fetal immune cells

    Get PDF
    Human fetal immune system begins to develop early during gestation, however factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in-utero and their contribution towards activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S-rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta and lungs, in 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph-node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualised discrete localisation of bacteria-like structures and eubacterial-RNA within 14th week fetal gut lumen. These findings indicate selective presence of live-microbes in fetal organs during 2nd trimester of gestation and have broader implications towards establishment of immune competency and priming before birt

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    corecore