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High-grade serous ovarian carcinoma (HGSOC) is genetically unstable and
characterised by the presence of subclones with distinct genotypes. Intratu-
moural heterogeneity is linked to recurrence, chemotherapy resistance, and
poor prognosis. Here, we use spatial transcriptomics to identify HGSOC sub-
clones and study their association with infiltrating cell populations. Visium
spatial transcriptomics reveals multiple tumour subclones with different copy
number alterations present within individual tumour sections. These sub-
clones differentially express various ligands and receptors and are predicted
to differentially associate with different stromal and immune cell populations.
In one sample, CosMx single molecule imaging reveals subclones differentially
associating with immune cell populations, fibroblasts, and endothelial cells.
Cell-to-cell communication analysis identifies subclone-specific signalling to
stromal and immune cells and multiple subclone-specific autocrine loops. Our
study highlights the high degree of subclonal heterogeneity in HGSOC and
suggests that subclone-specific ligand and receptor expression patterns likely
modulate how HGSOC cells interact with their local microenvironment.

Ovarian cancer is the eighth leading cause of cancer deaths in women  fallopian tube and ovarian surface epithelium®* and genomically is
worldwide'. High-grade serous ovarian carcinoma (HGSOC) is the most  characterised by almost universal TP53 mutations and copy number
common and lethal histologic subtype, accounting for 70-80% of alterations (CNAs)* . Notably, although several chromosomal regions
ovarian cancer deaths’. HGSOC is thought to be derived from both are recurrently altered®, and multiple genes (FAT3, CSMD3, BRCAIL,
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BRCA2, NF1, CDK12, GABRAG6, RBI1, PTEN, and RADSIB) are recurrently
disrupted, HGSOC genomes are highly heterogeneous with most of the
above alterations only found in a small fraction of tumours**™2 Also,
due to a high degree of chromosomal instability”’, most HGSOCs are
polyclonal*®®. As the cancer progresses and metastasises, clonal
diversity increases, which is associated with worse prognosis and
development of chemoresistance®®'¢",

Recently, a number of investigations employing single-cell RNA-
sequencing (scRNA-seq) have explored the composition of cell types
within the tumour microenvironment of HGSOC, both in primary
tumours and metastatic sites’® . Additionally, these studies utilised
copy number inference techniques to detect chromosomal copy
number alterations (CNAs) in HGSOC tumour cells'** and subclones*
exhibiting distinct CNAs. With these single cell profiles it is now
apparent that previously reported transcriptional subtypes of HGSOC
based on bulk expression measurements (mesenchymal, immunor-
eactive, differentiated, and proliferative), which are associated with
differences in prognosis”, largely reflect the degree of immune cell
infiltration and the abundance of fibroblasts', rather than inherent
differences in tumour cells. To determine how these non-malignant
cell types might influence tumour growth and prognosis, several
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Fig. 1| Graphical overview of the Visium data generated for eight HGSOC
samples. a Hematoxylin (blue) and eosin (red) stained tissue sections. Patient IDs
are shown for each section. Scale bar =1 mm. b Gene expression-based clustering of
the Visium data. Expression profiles for spots are clustered and then mapped back
onto the tissue sections. Cluster colours are randomly assigned. ¢ Tumour cell
enrichment weights calculated using RCTD”. Spots with tumour cell enrichment
are shown in red. d CNA-based clusters. Blue, red, and yellow spots correspond to
putative tumour subclones, grey spots are non-malignant regions with RCTD
tumour scores <0.15, green and pink correspond to border regions.

groups have predicted ligand-receptor interactions between stromal,
immune and tumour cell populations®**,

Here we use spatial transcriptomics (10x Genomics Visium and
NanoString® CosMx™ Spatial Molecular Imaging (SMI)) of HGSOC
tumours to reveal the relationship between tumour subclonal geno-
types and infiltration patterns by non-malignant cell types. Using CNA
inference, we predict that even within small tumour sections
(<6.5mm?) several regionally distinct subclones can exist. We show
that the subclones identified display different patterns of infiltration
and that tumour cells may influence their local microenvironment by
subclone-specific upregulation of ligands and receptors. We also find
evidence of subclone-specific autocrine loops where ligands, cognate
receptors, or both are upregulated in one clone compared to another.
Our analyses predict a link between subclonal genotype differences
and differential infiltration patterns.

Results

Spatial gene expression of HGSOC tumours

Visium spatial transcriptomics technology utilises a grid of ~5000
55um spots with uniquely barcoded oligo-dT primers, spaced
100 um apart, to sample RNAs from an overlaid tissue section.

e Histopathological expert annotation of the tissue sections using QuPath®’. Red
corresponds to malignant cells, green corresponds to stroma. Scale bar =1 mm.
Note that the colours shown in b are arbitrary but highlight that unsupervised
clustering of the expression data using Seurat (b), and clustering of inferCNV
profiles (d) identified clusters with spatial patterns that largely reflected the mor-
phology shown in a and the pathology shown in e. Supplementary Fig. S19 shows
Sankey diagrams and statistics summarising the relationship between the clusters
shown in (b) and (d).
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We employed this technology on sections of primary tumours from
eight HGSOC patients to study their cellular composition and
tumour microenvironment (Fig. 1a). The tumour samples were col-
lected during interval debulking surgery from HGSOC patients who
underwent taxane- and platinum-based neoadjuvant chemotherapy
(NACT) (Supplementary Fig. S1, Supplementary Data 1) and included
three patients with poor chemotherapy response score (CRSI:
patients 1, 7 & 8), three with good response (CRS3: patients 2, 3 & 5)
and two with a partial response (CRS2: patients 4 & 6)*°. The number
of Visium spots with data varied across the eight patient samples,
ranging from 1501 to 3584 per section, and the median number of
genes detected per spot was 2459 (corresponding to 5882 unique
molecular identifiers, UMIs) (see Methods). Gene expression clus-
tering of the spots in each section identified five to nine clusters per
sample (Fig. 1b). The spatial distribution of the identified clusters
largely mirrored morphologically distinct regions of the sections
seen after haematoxylin and eosin (H&E) staining (Fig. 1a, b). For
instance, the clusters shown in grey and orange for patient 1 in
Fig. 1b correspond to areas at the top and bottom of the tissue
section that are visually distinct from the rest of the section on the
H&E staining image (Fig. 1a).

As Visium spots sample transcripts from several cells (typically
one to 10), the gene expression profile of a spot can potentially be
from a mixture of different cell types. To estimate the cellular
composition of each spot, we next applied robust cell type decom-
position (RCTD)?, one of the top-performing methods for cell type
deconvolution®® (Methods). Using expression profiles of 12 cell
types identified in a scCRNA-seq dataset of post NACT HGSOC sam-
ples (generated in this study, see Methods, Supplementary Fig. S1),
RCTD revealed distinct areas with predicted high incidence of
tumour cells in each section (Fig. 1c). Positive correlations between
RCTD cell type weights indicated co-localisation of some non-
malignant cell types (e.g. fibroblast, endothelial cell and myofibro-
blast scores correlated strongly with each other, Supplementary
Fig. S2). There was also a strong anticorrelation between tumour cell
weights and B/plasma cell, fibroblast, and macrophage weights
(Supplementary Fig. S2). The spatial distribution of cell type weights
for non-malignant cell types exhibited notable heterogeneity both
between and within samples (Supplementary Fig. S3). Similar results
were obtained when we repeated the RCTD spot decomposition
using a larger recently published metastatic ovarian cancer scRNA-
seq dataset*. As expected, the RCTD scores for cell populations
common to both scRNA-seq datasets, such as macrophages, endo-
thelial, and T cells, were significantly correlated (Supplemen-
tary Fig. S4).

Tumour subclones with unique CNAs and spatial locations
Copy number alterations (CNAs) are ubiquitous in HGSOC’. To
predict CNAs for each Visium spot and to cluster spots by similar
CNA profiles, we applied inferCNV, which detects differences in
average relative expression levels for a sliding window of 101
genes”. For each sample we used expression from Visium spots with
RCTD tumour cell weights below 0.15 as a normal reference profile.
The obtained inferCNV profiles were grouped into clusters, with the
number of clusters determined manually based on noticeable var-
iations in residual expression. Clusters with fewer than 10 differen-
tially expressed genes between them were subsequently merged. We
then employed Hidden Markov and Bayesian latent mixture mod-
elling within inferCNV to identify high-confidence CNAs within the
resulting clusters.

In patient 1, inferCNV predicted multiple large high-confidence
CNAs. These included amplifications of specific regions in chromo-
somes 8, 12, and 20, as well as deletions in parts of chromosomes 6, 17,
and 19 (Fig. 2b). In the identified clusters P1.1, P1.2, P1.3, P1.4, and P1.5,
inferCNV detected 44, 37, 48, 31, and 5 high-confidence CNAs,

respectively, many of which were shared between clusters (Supple-
mentary Data 2). Notably, clusters P1.1, P1.2, and P1.3 are distinguished
by unique CNAs exclusive to each cluster, which suggests that these
clusters harbour tumour subclones with different CNAs (Fig. 2c, Sup-
plementary Data 2). In contrast, all the high-confidence CNAs detected
in clusters P1.4 and P1.5 were observed in the other clusters, leading us
to conclude they were likely border regions containing one of the
above clones but with a higher stromal content. Supporting this con-
clusion, the malignant clusters P1.1, P1.2, and P1.3 had higher average
RCTD tumour weights (0.58, 0.57, and 0.48, respectively). It is worth
noting that while the CNA patterns observed in P1.4 and P1.5 can be
explained by differences in tumour-stroma proportions, the mutually
exclusive CNAs observed in P1.1, P1.2 and P1.3 can only be explained by
the presence of subclones with distinct CNAs.

In the seven remaining patients, our analysis identified three
samples with a single malignant cluster and four samples with two
malignant clusters with different CNA profiles (Fig. 1d, Supplementary
Fig. S5-11). A summary of overlapping and unique high-confidence
CNAs in the eight patients and a comparison to CNAs identified by
the TCGA is provided in Supplementary Fig. S12. To confirm that our
strategy reliably identified malignant clusters, we carried out a histo-
pathological assessment of the H&E images from the Visium sections,
which showed that in most cases tissue areas with low RCTD tumour
cell scores corresponded to regions of cells labelled as stroma by a
pathologist using QuPath, while high-confidence malignant CNA-
based clusters corresponded to the regions of cells called as malig-
nant (Fig. 1e). Notably, repeating the inferCNV analyses using QuPath
annotations to identify background spots overlapping morphologi-
cally normal cells resulted in substantially worse CNA inference and
failed to predict subclones (Supplementary Note 1).

To validate the cluster-specific CNAs predicted in patient 1 for
clusters P1.1, P1.2 and P1.3, we performed whole genome amplifica-
tion and ultra-low-pass whole genome sequencing (WGS) of micro-
dissected regions corresponding to these clusters and a non-
malignant control region (Methods). For each cluster, several
small tissue fragments were isolated from an adjacent section to that
profiled by Visium (Fig. 2d). We used ichorCNA*° to identify large-
scale copy number alterations in the DNA extracted from each
region. Notably, the CNA profiles of replicates within each cluster
were highly correlated with the exception of replicate 1 of P1.1 which
had slightly stronger correlation with replicates from the P1.3 and
P1.2 clusters (Supplementary Data 3). The averaged ichorCNA sig-
nals also strongly correlated with the averaged inferCNV signal
across spots within the respective cluster, with Spearman correla-
tion coefficients of 0.66, 0.67, and 0.65 for the clusters P1.1, P1.2, and
P1.3, respectively. Furthermore, the WGS confirmed multiple high-
confidence CNAs predicted by inferCNV, including those specific to
the three clusters and others shared among all malignant clusters.
Specifically, the deletion at chromosome 4 in P1.2 was validated
across all three replicates, the amplification at chromosome 4 in P1.3
was validated in both replicates, the deletion at chromosome 5 in
P1.1 was validated in both replicates, and the amplification at chro-
mosome 19 in P1.3 was confirmed in both replicates (Fig. 2e). Addi-
tionally, the amplification of chromosome 12, which was common to
all malignant clusters, was also validated (Fig. 2e). Supplementary
Fig. S13 shows genome-wide views of the ichorCNA results. Note the
observed patterns of validated cluster-specific CNAs cannot be
explained by differences in tumour-stroma proportions, thus, we
concluded that tissue areas corresponding to the clusters P1.1, P1.2,
and P1.3 likely contain tumour subclones that are closely related,
sharing several CNAs, but also possessing additional unique CNAs.
Figure 2f shows representative areas for these subclones, where
hyperchromatic, pleomorphic nuclei, arranged in variably solid,
glandular and papillary patterns typical of HGSOC are visible; see
Supplementary Fig. S7-10 for other samples.
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Fig. 2 | Copy number analysis reveals three tumour subclones with spatially
restricted patterns in patient 1. a Projection of spot clusters identified by
inferCNV onto the tissue section. PLbackground corresponds to the set of spots
used as a reference for inferCNV, PL1, P1.2, and P13 are three putative tumour
subclones, P1.4 and P1.5 are probable tumour border clusters. Scale bar =1 mm.
b Heatmap generated by inferCNV showing inferred CNA profiles of Visium spots
for five clusters. ¢ High-confidence CNAs identified by Hidden Markov and Bayesian
latent mixture modelling within inferCNV for the five clusters. d Adjacent tissue
section showing areas collected for low pass whole genome sequencing (WGS).

M 1copy M 2copies M 3copies M 4+ copies

Colours of ellipses correspond to the colours of clusters in a. Scale bar = 1mm.

e IchorCNA CNA profiles for selected chromosomes confirming high-confidence
CNAs predicted by inferCNV. See Supplementary Fig. S13 for the genome-wide
view. Three tumour subclones and non-malignant tissue (P1.background) are
shown with two or three replicates each, corresponding to tissue fragments in (d).
f Representative tissue areas for the three subclones. Hematoxylin (blue) and eosin
(red) staining (HnE) and histopathological expert annotation using QuPath® are
shown, red corresponds to malignant cells, green corresponds to stroma. Location
of these areas on the tissue is shown by rectangles in (a). Scale bar = 0.1 mm.

Spatial distribution of transcriptionally defined molecular
subtypes

HGSOC has previously been classified based on bulk gene expression
measurements into four molecular subtypes: mesenchymal, immu-
noreactive, differentiated, and proliferative®. Patients with immunor-
eactive and differentiated subtypes have been reported to have better
outcomes, while those with mesenchymal and proliferative subtypes
have poorer outcomes®>', However, the reproducibility and clinical
significance of these subtypes remain debated, and no consensus has
been reached®***. The Visium data presents a unique opportunity to

investigate these molecular subtypes in a spatial setting where the
ratios of tumour and stromal cells vary across a slide from the same
patient biopsy; therefore, we employed the Seurat tool** and utilised
the gene sets identified by PrOTYPE (predictor of high-grade serous
ovarian carcinoma molecular subtype)®' to calculate module scores for
each subtype. This analysis revealed variations in subtype signatures
across each slide which were different to a whole slide estimate based
on all spots, indicating the presence of multiple co-existing subtypes
within a Visium section, and that sampling of different regions of the
tumour would likely yield different classifications (Fig. 3,

Nature Communications | (2024)15:2860
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Fig. 3 | Variations in HGSOC molecular subtype signatures. a Distribution of
Module scores for the four molecular subtype signatures in each of the CNA-based
clusters in patient 5. b Spatial distribution of Module scores for the four molecular
subtype signatures in patient 5. ¢ Distribution of Module scores for the four
molecular subtype signatures in each of the CNA-based clusters in patient 1.

d Spatial distribution of Module scores for the four molecular subtype signatures in
patient 1. The labels shown correspond to the mesenchymal (C1.MES), immunor-
eactive (C2.IMM), differentiated (C4.DIF), and proliferative (C5.PRO) subtypes

respectively; IMM and DIF are associated with good outcomes while MES and PRO
are associated with poor outcomes?. For (a) and (c), black lines are medians, red
dotted lines show the value if all spots are combined as a pseudo-bulk. ns and bars
indicate seven pairs of clusters where there was no significant difference in the
module score; all other pairwise comparisons returned significant results, sig-
nificance was determined using two-sided Mann-Whitney U test with Benjamini-
Hochberg correction and 0.05 threshold. Source Data for panels (a) and (c) are
provided.
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Supplementary Fig. S5-7, 9-11). Notably, the relative signal of each
subtype varied in regions identified as non-malignant and malignant.
For instance, in patient 5, the malignant clusters P5.1 and P5.2 displayed
scores associated with a favourable outcome (high differentiated and
low mesenchymal), while non-malignant regions exhibited low differ-
entiated and high mesenchymal scores (Fig. 3a, b). Consistently, non-
malignant areas in other samples had lower differentiated and higher
mesenchymal scores than malignant areas (Fig. 3c, d, Supplementary
Fig. S5-7, 9-11). These findings are in agreement with a previous study
reporting that varying stroma-to-tumour cell ratios impact on the
reproducibility and interpretation of these molecular subtypes®.

Gene expression and microenvironment differences between
tumour subclones

Our inferCNV analysis detected several malignant clusters with distinct
CNAEs in five samples, including four samples with two clusters each
and one sample with three clusters. The validation by WGS in patient 1
suggests that these clusters likely contain different tumour subclones.
To investigate gene expression differences between tumour subclones
and variations in the cell types they associate with, we performed
pairwise differential gene expression analysis on malignant CNA-based
clusters within each patient (total of seven comparisons). This analysis
identified between 15 and 233 genes significantly differentially
expressed between malignant clusters of each patient (Supplementary
Data 4). The combined list of 606 differentially expressed genes was
next annotated as tumour cell or stromal cell derived using the scRNA-
seq dataset (Supplementary Data 4). Among these genes, 229 (38%)
were most highly expressed in tumour cells (many of which fell within
amplified genomic regions, Supplementary Data 5), while 60% exhib-
ited the highest expression in other cell types (21 genes in B/plasma
cells, 24 in T cells, 37 in myofibroblasts, 41 in endothelial cells, 47 in
mesothelial cells, 54 in macrophages, and 141 in fibroblasts). The
remaining 2% (12 genes) were not detected in our scRNA-seq dataset.

Next, we compared non-tumour cell infiltration between malig-
nant CNA clusters using RCTD cell type weights. Permutation testing
revealed significant within-patient differences across multiple clusters
and cell types (Supplementary Fig. S14). As an example, we observed
significantly different infiltration by T cells between clusters P1.1 and
P1.2, P4.1 and P4.2, as well as between P7.1 and P7.2. Similarly, clusters
of patients 5, 6, and 7 showed differential infiltration by B cells, while
clusters of patients 1, 4, 5, and 7 displayed differential infiltration by
macrophages.

Taken together, our analyses reveal tumour-subclone-intrinsic
gene expression differences and evidence that these subclones may be
associated with different immune and stromal cell populations. Sig-
nificantly, genes associated with prognosis and therapy sensitivity
were differentially expressed between malignant clusters containing
different subclones. For example, the tumour cell expressed genes
CD24, CLU, and SLPF™* and the infiltrating cell expressed genes
GPNMB, MGP, GPX3, and MFAP4** * have all been previously associated
with poor prognosis and chemotherapy resistance in HGSOC. We note
in a supplementary analysis comparing malignant spots from the three
good response and three poor response samples that genes uniquely
expressed by immune cells (B cells and macrophages) were more
highly expressed in good response samples and genes expressed in
tumour cells were more highly expressed in poor response samples
(Supplementary Note 2, Supplementary Data 6).

Single cell resolution spatial transcriptomics of subclones

We used the NanoString CosMx Spatial Molecular Imaging (SMI)
system*” to spatially examine gene expression at single cell resolution.
A 960 gene panel was applied to a serial section of the biopsy profiled
by Visium from patient 5. Cellpose** was used to identify 39,939 seg-
ments corresponding to putative cells. These were filtered to retain
segments where at least 100 transcripts were detected and Scrublet**

was used to remove segmentation doublets (artifactual fusing of cells
due to segmentation failure). This left 21,651 putative singlet cells
which were then clustered and annotated. Based on marker genes, 12
distinct cell populations were identified in the CosMx dataset (two
tumour cell populations, LYZ+, SPPI+, CIQC+, and CXCL9+ macro-
phages, CCL5+T cells, IGHAI+ and IGHGI+ plasma cells, COL3AI+
fibroblasts, ENG+ endothelial cells, and KRT17+ epithelial cells;
Fig. 4a, b).

We first used the CosMx data to confirm that the two tumour
subclones predicted in the malignant clusters P5.1 and P5.2 of the
Visium data were present in the serial section. Indeed, two clusters of
tumour cells expressing high levels of known HGSOC tumour cell
markers and staining positive with a pan-cytokeratin antibody were
identified by CosMx SMI in the same positions as clusters P5.1and P5.2
of the serial section profiled by Visium (top right and bottom right,
respectively, Supplementary Fig. S15a, Fig. 4a, c). Furthermore, cells in
these two CosMx clusters differ dramatically, with 155 significantly
differentially expressed genes (FDR < 0.05, [log,FC|> 1, Supplementary
Data 7), supporting our prediction of different tumour subclones in
the corresponding tissue areas.

We next compared genes differentially expressed (FDR <0.05,
[log>FC|> 1) between P5.1 and P5.2 clusters in Visium data to those
differentially expressed between the two tumour cell clusters in the
CosMx data. Of 17 genes differentially expressed between P5.1 and P5.2
and present on the CosMx panel, 13 were validated by the CosMx data
as differentially expressed between the two tumour cell clusters
(Fig. 4d, Supplementary Data 8). This included PIGR in the subclone
mapping to P5.1 and PTGSI in the subclone mapping to P5.2, thus, we
henceforth refer to these tumour subclones as PIGR+ tumour cells and
PTGS1+ tumour cells, respectively. Of the 13 validated differentially
expressed genes, 7 and 6 were consistently identified by both tech-
nologies as significantly more highly expressed in the P5.1/PIGR+ or
P5.2/PTGS1+ tumour subclones, respectively (Fig. 4d, Supplementary
Data 8). For the remaining four genes, two were derived from B/plasma
cells (/GKC, IGHAI), and two were differentially expressed between the
subclones in the CosMx data but below our two-fold change threshold
(KRT17, SLPI).

Importantly, seven genes differentially expressed between P5.1
and P5.2, and initially categorised as stroma-derived based on scRNA-
seq data (SIO0AS, SIO0A9, CXCL9, INHBB, ADIRF, IGHM, TAGLN), were
revealed by the CosMx data to be highly expressed within and differ-
entially expressed between the PIGR+ or PTGSI+ subclones. Remark-
ably, 132 genes were exclusively identified as significantly differentially
expressed between the clones in the CosMx data (Fig. 4d, Supple-
mentary Data 8). This underscores the superior capability of single-cell
resolution CosMx spatial data in capturing differentially expressed
transcripts intrinsic to the tumour that might have been overlooked by
the lower resolution Visium data.

Subclonal microenvironments at single cell resolution

With the CosMx data we next examined whether the subclones iden-
tified in patient 5 preferentially associated with different sets of non-
malignant cell types. We first used neighbourhood analyses to survey
the proportions of each cell type in the local neighbourhood of PIGR+
and PTGSI+ tumour cells. We employed the Squidpy® software to
survey the neighbouring cells of each tumour cell at 3 different dis-
tances (radii of 110, 340, and 648 pixels) which yielded median num-
bers of 3, 30 and 100 neighbouring cells, for each of the respective
distances. This allowed us to discriminate between cells directly
touching the tumour clones, those in the local niche, and those further
away. Remarkably, the most common neighbouring cell type was other
tumour cells, with a significant proportion of cells neighbouring
PTGSI+ cells also being PTGSI+ cells (90%, 80%, and 69% at the
respective distances). Similarly, for the PIGR+ subclone, a considerable
percentage of neighbours (80%, 63%, and 54% at the respective
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Fig. 5 | Subclonal microenvironment and ligand and receptor analyses. Using
squidpy we surveyed the cell types neighbouring each cell type at 3 different dis-
tances (Supplementary Data 9). a Neighbouring cells at the shortest radius of 110
pixels (median of 3 neighbouring cells). Rows indicate query cell type. Columns are
neighbouring cell types. Numbers in cells are the percentage across each row.
Green indicates maximum value per row. Residual proportions after removing
homotypic tumour cell-tumour cell neighbours are also shown. Enriched and
depleted cell populations are indicated with e and d, respectively. b Cell neigh-
bourhood analyses showing seven cell populations that each contribute at least 3%
of the neighbouring non-tumour cells at three distances yielding medians of 3, 30
and 100 neighbouring cells, respectively. Populations significantly more abundant
near the PIGR+ and PTGSI+ clones are indicated in blue and with *, and in pink with

#, respectively. Ligand-receptors signalling between tumour subclones and cells in
their microenvironment involving: ¢ Ligands up-regulated in the PIGR+ subclone,
d Ligands up-regulated in the PTGSI+ subclone, e Receptors up-regulated in the
PIGR+ subclone, f Receptors up-regulated in the PTGSI+ subclone. Secreted ligands
and plasma membrane ligands are indicated by red and blue bars, respectively.
Magma palette used; dark pixels indicate strongest signalling and white indicates
no signalling. Autocrine loops are indicated with a. Receptors and ligands needed
to be detected in > 10% of cells from a cell type to be shown. Note: only 281 of 828
ligands and 229 of 691 receptors in connectomeDB2020* are covered on the
CosMx platform, thus many subclone-specific signalling events are likely missed in
this analysis.

distances) were also PIGR+ subclonal cells (Supplementary Data 9;
Fig. 5a shows the proportions at radii of 110 pixels). The most common
heterotypic neighbour pairs involved CCL5+ T-cells and COL3AI+
fibroblasts neighbouring other cell types. Prominently, only CXCL9+
macrophages were frequently neighboured by tumour cells (Fig. 5a).

To examine the association of the subclones with other cell types,
we removed all homotypic interactions between tumour cells and

recalculated the proportions of heterotypic interactions involving the
PTGSI+ and PIGR+ subclones and other cells. Utilising significance
testing by cell type label permutations, we consistently observed a
significant enrichment of CCL5+ T cells and CXCL9+ macrophages in
close proximity to both subclones across all distances. Conversely,
there was a consistent and significant depletion of LYZ+ macrophages
and SPP1+ macrophages near both subclones at all distances (Fig. 5a,
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Supplementary Data 9). We then conducted a comparison of hetero-
typic neighbours of the PIGR+ and PTGSI+ subclones, with significance
determined through cell label permutation. The results indicated that
across all three distances, CIQC+ macrophages, CCL5+ T cells, and
IGHGI+ plasma cells exhibited a significantly higher likelihood of
association with the PIGR+ clone. Conversely, COL3AI+ fibroblasts
showed a significantly higher likelihood of association with the PTGSI1+
clone (Fig. 5b, Supplementary Data 9). Notably, RCTD analysis of the
Visium data found similar associations, more macrophages associated
with the P5.1/PIGR+ clone and more fibroblasts associating with the
P5.2/PTGS1+ clone (Supplementary Fig. S14).

Cell-to-cell communication analysis of tumour subclones

We next used the CosMx data to examine cell-to-cell communication
of the PIGR+ and PTGSI+ subclones identified in patient 5. For these
analyses we focused on ligands and receptors that were highly
expressed in a subclone (expression > 50% of max expression across all
cell types) and differentially expressed between the subclones
(FDR < 0.05, log,FC >1, detected in > 10% of cells). In total, 17 ligands
and 11 receptors were more highly expressed in the PIGR+ clone and 16
ligands and 14 receptors were more highly expressed in the
PTGSI+ clone.

To predict how these subclone-specific differences in ligand and
receptor expression levels might alter their interactions with cells
expressing cognate receptors and ligands in their microenvironment,
we used NATMI and the literature-supported ligand and receptor
database connectomeDB2020*. This revealed that ligands from the
PIGR+ subclone predominantly bind receptors on macrophages and
T cells, while those from the PTGSI+ clone predominantly bind
receptors on epithelial cells and endothelial cells (Fig. 5c, d). Examples
of PIGR+ subclone derived ligands predicted to signal to cells more
abundant near the PIGR+ clone include SIO0A8 and S100A9 signalling
to CIQC+ macrophages, and CD5S, CD59 and CXCLIO signalling to
CCL5+ T cells (Fig. 5c). Similarly, the PTGSI+ subclone derived ligands
EFNB2, CLCFI1, and BMP7 are predicted to signal to ENG+ endothelial
cells which were more abundant close to PTGSI+ cells (Fig. 5b, d).

Surprisingly, multiple subclone specific autocrine loops were
also predicted. This was achieved by up-regulation of receptors,
ligands or both (Fig. 5¢c-f). For the PIGR+ clone, autocrine loops
involving  EFNA1/EFNA4/EFNBI->EPHA4,  TNFSF10-> TNFRSFI0A/
TNFRSF10B, and TNFSF14- > LTBR were predicted (Fig. 5c, e). Similarly
for the PTGSI+ clone, autocrine loops involving BMP7->BMPRIA,
CDHI->IGFIR, CLCFI1->IL6ST, EFNB2->EPHB2/EPHB3/EPHB4, FGF1/
FGF18/FGF9 - > FGFR1/FGFR2/FGFR3, IGF1/IGF2->IGFIR, IL11->IL1IRA,
INHBB->ACVRIB, LTB->CD40/LTBR/TNFRSFIA, and WNT7A/WNT/B
-> FZD5 were observed (Fig. 5d, f).

Lastly, as CosMx data was only available for one patient, we used
the Visium data to calculate correlations between tumour cell
expressed ligands and RCTD-estimated cellular infiltrates across all
eight samples. This identified multiple tumour ligands, whose
expression was correlated with cellular infiltrates, for further
exploration in HGSOC (e.g., expression of CXCLIO correlated with
RCTD scores for CXCR3-expressing T cells; see Supplementary Note 3,
Supplementary Data 10).

Discussion

The importance of clonal heterogeneity in HGSOC cannot be over-
stated, as it directly impacts recurrence, relapse, and therapy
response®***’, For instance, intratumoural clonal heterogeneity® and
expansion of pre-existing clones’**” have been shown to be asso-
ciated with reduced survival after platinum based chemotherapy.
Disappointingly, a recent report also found evidence of patients with
subclones that are likely to be resistant to PARP inhibition*’. Using
Visium spatial transcriptomics, we investigated intratumoural het-
erogeneity in HGSOC samples from eight patients. This allowed us to

study the spatial relationships between tumour subclones, the
ligands and receptors they express, and the cells in their
microenvironments.

Building upon prior reports that most HGSOCs are polyclonal*?,
our spatially resolved copy number inference revealed multiple sub-
clones with different CNAs in five of the eight samples. This mirrors
findings from a recent report of spatially inferred CNAs*s. Our work-
flow also identified CNAs in two independent cohorts** of patients
with spatial transcriptomics data and for one cohort* identified two
samples from short term survivors with subclonal CNAs (Supplemen-
tary Fig. S16). Subclones were not observed in the second cohort®,
however, the samples studied were approximately seven times smaller,
making it unlikely they would sample multiple clones.

Remarkably, the cellular composition and histology of tumour
regions containing different subclones varied significantly (Fig. 2a, d,
Supplementary Fig. S14). In the case of the two subclones present in
patient 5, single-cell resolution spatial transcriptomics with CosMx SMI
revealed both were highly infiltrated by CCL5+T cells, CIQC+ and
CXCL9+ macrophages. Notably, these cells formed clusters resembling
tertiary lymphoid structures which have been reported as predictive of
prognosis in HGSOC™ (Fig. 4e). The CosMx data also revealed that
CIQC+ macrophages, CCL5+ T cells, and /IGHGI+ plasma cells were
more abundant near one tumour subclone while COL3A1+ fibroblasts
were more abundant near the other.

Differential expression analysis between subclones revealed
ligands and receptors were over-represented. This raises the possibi-
lity that tumour subclones may shape the composition of their local
microenvironments. In the case of patient 5, CosMx data predicted
multiple plausible subclone-specific signalling edges. For example, the
PIGR+ subclone expressed multiple ligands, including SIO0AS, SAAL,
and CXCLI0, which were predicted to signal to CXCL9+, CIQC+, LYZ+
macrophages, SPPI+ macrophages and CCL5+T cells, respectively
(Fig. 5¢). Amongst these, SIO0AS8 was identified as a potential ligand
driving higher association of CIQC+ macrophages with the PIGR+
clone. Others have previously attempted to relate tumour-expressed
ligands to differences in infiltration patterns®>*; however, to our
knowledge, none have reported that subclones expressing different
ligands may modulate their local tumour microenvironment.

Analysis of subclonally perturbed ligands and receptors from
CosMx SMI also revealed subclone-specific autocrine loops, several of
which are clinically relevant (Fig. 5c-f). For example, multiple fibro-
blast growth factors and their receptors were up-regulated in one
clone to create multiple FGF - > FGFR mediated autocrine loops. These
include FGFI8 which is a marker for poor prognosis®, FGF9 which is
induced by NACT and correlates with time to recurrence*®, and both
FGFRI and FGFR2 which are implicated in cisplatin resistant HGSOC"".
In the same subclone we also observed an autocrine loop involving
WNT7A - > FZDS which has been previously linked to HGSOC tumour
growth and progression®®. Our study is not the first to report autocrine
loops in HGSOC**“°, However, the upregulation of different sets of
autocrine loops in each subclone suggests tumour heterogeneity
facilitates evolutionary exploration of this space and reinforces the
importance of autocrine signalling to tumour fitness proposed almost
45 years ago®%,

In closing, our findings underscore the pervasive polyclonality
inherent to HGSOC. Notably, multiple genes associated with poor
prognosis were differentially expressed between subclones in our
data. This polyclonality poses challenges for molecularly targeted
personalised therapies®, necessitating strategies that address vulner-
abilities common to all clones within a patient or employ combination
therapies targeting individual clones. As immune infiltration is asso-
ciated with a good treatment response®*®, the study of subclones with
different microenvironments represents an opportunity to uncover
ligands that potentially influence the formation of anti-tumour
microenvironments such as tertiary lymphoid structures. Harnessing
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these identified ligands for therapeutic interventions holds promise in
guiding tumours towards more positive outcomes.

Methods

Ovarian tumour samples and consent

The study was approved by the St John of God Health Care (SJGHC),
The University of Western Australia (UWA) and Curtin University
Human Research Ethics Committees (approval numbers #1217 and RA/
4/20/5784). All participants were given information about the study
and provided written informed consent before enrolment.

High-grade serous ovarian tumours from 10 patients diagnosed
with stage IlI-1V cancers were included in this study. For three patients,
samples were profiled using both Visium and scRNA-seq, see Supple-
mentary Data 1. Patients were treated with 3-6 cycles of platinum-based
chemotherapy. All tumour samples were derived from ovarian sites
during interval debulking surgery. Fresh tumours were either collected
in RPMI (ThermoFisher Scientific) supplemented with penicillin and
streptomycin (Sigma) for single-cell dissociation or immediately snap-
frozen and stored in —80 °C tumour bank until retrieved for Visium
experiments.

The chemotherapy response scores (CRS, 3 tier) for each patient
were determined as previously described®® by assessing the largest
(macroscopic) omental tumour deposit for features of regression
based on the following: score 1 (no/minimal tumour response), score 2
(partial tumour response) and score 3 (complete/near complete
response, cell groups measuring <2 mm each, or no residual tumour)®.

Statistics & reproducibility

No statistical method was used to predetermine sample size. No data
were excluded from the analyses, with the exception of low quality cell
segments and spots filtered out as described below in the sections on
the Visium and CosMx analyses. The experiments were not rando-
mised. The investigators were not blinded to allocation during
experiments and outcome assessment. Statistical tests used in the
manuscript are described in the main text and in the methods below.

Histopathological assessment

Whole-slide H&E images from Visium tissue sections were analysed
using QuPath®” version 0.4.3. To classify tumour and stroma cells,
whole-tissue regions of interest were selected with positive cell
detection based on hematoxylin nuclei staining. Segmentation of
tumour and stroma areas were then performed using QuPath’s train
object classifier command. Representative training areas were anno-
tated by an experienced pathologist using the annotation tools to
classify tumour area (red) and stroma area (green). QuPath algorithm
used available features to train the classifier to provide optimal clas-
sification performance. A minimum of 5 training rounds were per-
formed to ensure adequate segmentation of the tumour and stroma
regions. Once satisfactory, the classifier was applied to the whole
image. The images with tissue classification overlay were then
exported.

Single-cell suspension for scRNA-seq

HGSOC tumours were dissociated using the tumour dissociation kit 2,
human, from Miltenyi Biotec [130-095-929] as per manufacturers’
instructions. Tumour tissue (0.2-1g) was cut into small pieces of
2-4 mm and placed into a gentleMACS C-tube [Miltenyi Biotech; 130-
093-237] containing the enzyme mix from the kit. The tube was then
placed onto the gentleMACS octo dissociator (Miltenyi Biotech) and
processed using the 37C_h_TDK_1 program with the associated incu-
bation times indicated in the protocol. Complete tissue dissociation
was confirmed by the absence of visible tissue chunks. The resulting
tumour homogenate was filtered using a 70-um MACS SmartStrainer
and washed with RPMI. Cell suspension was further filtered through
40-um strainers to remove cell clumps. The viability was assessed by

ReadyProbe Cell Viability Imaging Kit (ThermoFisher Scientific) to
ensure the viability was >90%.

Single-cell RNA-seq profiling

Cryostored cells were rapidly thawed in a water bath set at 37 °C. 1 mL
of Media (RPMI1640 + 10%FBS) was then added to the cells, which were
then mixed and transferred to a 15 mL falcon tube. The cryovial was
then rinsed with another 1 mL of media which was subsequently added
to the 15 mL falcon tube in a dropwise fashion. 7 mL of media was then
added to the falcon tube dropwise using a serological pipette. The cells
were then centrifuged at 300 g for 5minutes. The supernatant was
removed, leaving behind 1 mL of media, and another 1 mL of media was
added and the cells were resuspended. 2 mL of DPBS + 0.04%BSA was
then added to the cells, followed by another centrifugation at 300 g for
Sminutes. The supernatant was then removed and the cells were
resuspended in 1 mL of DPBS + 0.04%BSA and then subsequently run
through a 40 uM filter. Cells were then counted and viability was
checked using the Countess Il automated cell counter and the
readyprobes red/blue viability kit (Thermo Fisher Scientific). Libraries
were prepared in accordance with the protocol for 10x Chromium
Single Cell 3’ v2 (10x Genomics). Sequencing was performed on a
NovaSeq 6000 (lllumina).

Visium spatial transcriptomic profiling

Frozen tissue fragments were embedded in Tissue-Tek O.C.T. Com-
pound (25608-930, VWR) according to the Visium Spatial Protocols -
Tissue Preparation Guide (CG0O00240 Rev A, 10x Genomics) and
stored immediately at —80 °C until further use. Hematoxylin and eosin
staining of 10 um cryosections from each O.C.T. block were assessed
by a pathologist to confirm tissue type and tumour content. Samples
with adequate tumour content were selected for use in the gene
expression workflow.

To assess the quality of the selected tissue blocks, RNA was iso-
lated from serial sectioned tissues totalling 80 uM thickness and its
RNA integrity number (RIN) was calculated using the Agilent 4200
TapeStation system. Samples which had a RIN>7 were considered
good quality and selected to proceed with the experiment. Each Vis-
ium Spatial Gene Expression Slide (2000233, 10x Genomics) was used
to analyse up to four tissue samples, i.e. one section per sample block.
Of the four samples, one block was randomly selected for tissue
optimisation using a Visium Spatial Tissue Optimisation Slide
(3000394, 10X Genomics). Serial tissue sections at 10 uM thickness
were placed on seven capture squares of the pre-chilled tissue opti-
misation slide with the remaining square left empty. Different tissue
permeabilisation times were tested on 6 of the sections at 10-minute
intervals to a maximum of 60 minutes. The remaining tissue section
represented a negative control for permeabilisation while the empty
well served as a positive control to which a reference RNA was added
(QS064, Life Technologies). The optimal permeabilisation time point
was 30 minutes and was therefore used as the permeabilisation time
on the gene expression samples.

A Nikon Eclipse Ni-U microscope with a 10x objective in large scale
imaging mode (Nikon, NIS-Elements AR 5.21.00) was used to take
brightfield images of the Visium Spatial Tissue Optimisation and Gene
Expression slides. The same settings were used to collect fluorescent
images of the optimisation slides via a Texas Red HYQ filter cube at
1.5seconds exposure time. Images were automatically stitched via
blending with a 10% tile overlap. Original files were saved as the default
*ND2’ format and exported to “.tiff’ or “jpeg’ using NIS-Elements AR or
Image), respectively.

Libraries were prepared according to the Visium Gene Expression
User Guide (CG000239, Rev A, 10X Genomics) and pooled to a final
library concentration of 1.8 nM. The samples were loaded on a Nova-
Seq 6000 System (Illumina) using NovaSeq 6000 SP Reagent kit (200
cycles, 20040326, Illumina) and sequenced at a depth of
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approximately 150 M reads per sample. The read protocol was set as
the following: read 1 at 28 cycles, i7 index read at 10 cycles, i5 index
read at 10 cycles and read 2 at 120 cycles.

Manual image alignment and spot selection of the H&E brightfield
images was performed in the Loupe Browser.

Ultra-low-pass DNA sequencing

Frozen tissue was sectioned (10 pm) and mounted to standard
superfrost slides, methanol fixed, stained with hematoxylin and eosin,
and scanned on a CellCelector (ALS). Using the CellCelector, the long
edge of a 150 pum glass capillary was used to mechanically scrape small
tissue sections from the slide which were aspirated and deposited in
1L of PBS (10 mM Phosphate, 2.68 mM Potassium Chloride, 140 mM
Sodium Chloride, 18912014, Thermo Fisher Scientific) in 0.2 mL PCR
tubes (Eppendorf). Tissue sections were subjected to whole genome
amplification using the Amplil WGA Kit (Silicon Biosystems) according
to the manufacturer’s instructions. Following amplification, 400 bp
sequencing libraries were constructed using the Amplil Low-Pass
Whole Genome Sequencing Kit for lon Torrent (Silicon Biosystems)
according to the manufacturer’s instructions. Libraries were diluted to
50 pM, loaded into an lon Chef for template preparation and loading
into an lon 530 chip, and then sequenced for 525 flows on an lon S5
(Thermo Fisher Scientific). Sequencing data was aligned to hg38 and
indexed using Torrent Server (V 5.16) with depths ranging from 0.1 to
0.3x. Following alignment and indexing,.wig files were generated using
readCounter in 1Mb windows from HMM Copy Utils®®. IchorCNA
(v0.2.0)*° was used to detect somatic copy number alterations with
1Mb bins and the run parameters set to --ploidy c(2,3,4), --normal
¢(0.05), --includeHOMD False, --chrTrain c(1:22), and --estimateScPre-
valence False. An unrelated non malignant tongue tissue biopsy was
used to construct a panel of normals using IchorCNA’s create-
PanelOfNormals.R script.

NanoString CosMx SMI profiling

CosMx SMI profiling was carried out on a serial section of tumour from
patient 5 adjacent to that profiled by Visium. The fresh frozen section
was transferred to a slide and shipped to NanoString for profiling as
part of their early technology access program (TAP).

CosMx SMI sample preparation. Fresh frozen (FF) tissue sections
were prepared for CosMx SMI profiling as described in He et al.*”
Briefly, five-micron tissue sections on VWR Superfrost Plus Micro slides
(cat# 48311-703) were stored at —80 °C, then heated to remove excess
moisture using a hair dryer on high for 5min and baked at 37 °C for
30 min to improve tissue adherence to the slide. Tissues were fixed by
incubation with 10% neutral buffered formalin (NBF) diluted in phos-
phate buffered saline (PBS) for 30 min at 4 °C, then washed three times
with 1x PBS for 2 min each. Following fixation, tissues were successively
dehydrated in 50% ethanol for 5 min, 70% ethanol for 5 min, and 100%
ethanol twice for 5 min each. Tissues were prepared for in-situ hybri-
dization (ISH) by heat-induced epitope retrieval (HIER) at 100 °C for
8 min using ER1 epitope retrieval buffer (Leica Biosystems product,
citrate-based, pH 6.0) in a pressure cooker.

After HIER, the tissue sections were digested with 5 ug/ml Protei-
nase K diluted in ACD RNAscope® LS Protease IV at room temperature
for 30 minutes. Slides were washed twice with 1x PBS and incubated in
0.0004% diluted fiducials (Bangs Laboratory) in 2X SSCT (2X saline
sodium citrate, 0.001% Tween-20) solution for 5min at room tem-
perature in the dark. Excess fiducials were rinsed from the slides with
1X phosphate buffered saline (PBS) and tissue sections were fixed with
10% neutral buffered formalin (NBF) for 1 min at room temperature.
Fixed samples were rinsed twice with Tris-glycine buffer (0.1 M glycine,
0.1M Tris-base in DEPC H,0) and once with 1X PBS for 5min each
before blocking with 100 mM N-succinimidyl (acetylthio) acetate
(NHS-acetate, ThermoFisher) in NHS-acetate buffer (0.1M NaP, 0.1%

Tween PH 8 in DEPC H,0) for 15 min at room temperature. The sec-
tions were then rinsed with 2X saline sodium citrate (SSC) for 5 min and
an Adhesive SecureSeal Hybridization Chamber (Grace Bio-Labs) was
placed over the tissue.

NanoString ISH probes were prepared by incubation at 95 °C for
2min and placed on ice, and the ISH probe mix (1 nM 980 plex ISH
probe, 10 nM Attenuation probes, 1X Buffer R, 0.1 U/uL SUPERasesIn™
[Thermofisher] in DEPC H,0) was pipetted into the hybridization
chamber. The hybridization chamber was sealed to prevent evapora-
tion, and hybridization was performed at 37 °C overnight. Tissue sec-
tions were rinsed of excess probes in 2X SSCT for 1 min and washed
twice in 50% formamide (VWR) in 2X SSC at 37 °C for 25 min, then twice
with 2X SSC for 2 min at room temperature and blocked with 100 mM
NHS-acetate in the dark for 15 min. A custom-made flow cell was affixed
to the slide in preparation for loading onto the CosMx SMI instrument.

CosMx SMI instrument run. RNA target readout on the CosMx SMI
instrument was performed as described in He et al.*’. Briefly, the
assembled flow cell was loaded onto the instrument and Reporter
Wash Buffer was flowed to remove air bubbles. A preview scan of the
entire flow cell was taken, and 20 fields of view (FOVs) were placed on
the tissue to match regions of interest identified by H&E staining of an
adjacent serial section. RNA readout began by flowing 100 ul of
Reporter Pool 1 into the flow cell and incubation for 15 min. Reporter
Wash Buffer (1 mL) was flowed to wash unbound reporter probes, and
Imaging Buffer was added to the flow cell for imaging. Eight Z-stack
images (0.8 pm step size) for each FOV were acquired, and photo-
cleavable linkers on the fluorophores of the reporter probes were
released by UV illumination and washed with Strip Wash buffer. The
fluidic and imaging procedure was repeated for the 16 reporter pools,
and the 16 rounds of reporter hybridization-imaging were repeated
multiple times to increase RNA detection sensitivity.

After RNA readout, the tissue samples were incubated with a 4-
fluorophore-conjugated antibody cocktail against CD298/B2M
(488 nm), PanCK (532 nm), CD45 (594 nm), and CD3 (647 nm) proteins
and DAPI stain in the CosMx SMI instrument for 2 h. After unbound
antibodies and DAPI stain were washed with Reporter Wash Buffer,
Imaging Buffer was added to the flow cell and eight Z-stack images for
the 5 channels (4 antibodies and DAPI) were captured.

Image processing and feature extraction. Raw image processing and
feature extraction were performed using an in-house CosMx SMI data
processing pipeline*> which includes registration, feature detection,
and localisation. 3D rigid image registration was made using fiducials
embedded in the samples matched with the fixed image reference
established at the beginning of the CosMx SMI run to correct for any
shift. Secondly, RNA image analysis algorithm was used to identify
reporter signature locations in X, Y, and Z axes along with the assigned
confidence. The reporter signature locations and the associated fea-
tures were collated into a single list. Lastly, the XYZ location infor-
mation of individual target transcript was extracted and recorded in a
table by secondary analysis algorithm, as described in He et al.*’.

Cell segmentation. The Z-stack images of immunostaining + DAPI
were used for drawing cell boundaries on the samples. A cell seg-
mentation pipeline using the machine learning algorithm Cellpose*
was used to accurately assign transcripts to cell locations and sub-
cellular compartments. The transcript profile of individual cells was
generated by combining target transcript location and cell segmen-
tation boundaries. Based on the Cellpose segmentation results, we
initially obtained 39,939 cells. After excluding cells with less than 100
transcripts, 26,895 cells were kept for downstream analysis. Across all
FOVs, 9,915,852 transcripts were detected; 80.97% of these were
detected in cells with > 100 transcripts. Cell segmentation doublets
(artifactual segments containing merged signals from adjacent cells)
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were removed using Scrublet* which left 21,651 which were used for
gene expression clustering, differential expression and cell-to-cell
communication analyses.

Single-cell RNA-seq data analysis

scRNA-seq data processing. FASTQ files were processed using Cell
Ranger 3.0.2 with refdata-cellranger-GRCh38-3.0.0 reference. Raw
gene-barcode matrices from Cell Ranger output were used for down-
stream processing. Cells were distinguished from background noise
using EmptyDrops®®. Genes detected in a minimum of 3 cells were
retained; cells with at least 500 genes, at least 1000 UMIs and under
15% of mitochondrial reads were retained. Seurat v3 was used for
sample normalisation (SCTransform, mitochondrial and ribosomal
mapping percentage were regressed out), integration (anchor-based
method with 3000 variable genes), dimensionality reduction and
clustering (using first 30 principal components), and differential
expression analysis (Wilcoxon test)’°. The integrated dataset contains
17,192 cells in total, with a median of 775 genes and 2002 UMIs per cell.

Inferring cell identity. To infer cell identities, we first performed a
reference-based annotation using scMatch” and a reference dataset
from Olbrecht et al. ovarian cancer samples?. To construct the refer-
ence dataset, we obtained gene counts and cell types reported in
Olbrecht et al.”’; counts were normalised to cell library size and aver-
aged within each cell type to derive reference vectors for scMatch. We
then used scMatch with parameters --testMethod s --keepZeros n to
label each individual cell with the closest cell type identity from the
reference dataset. This resulted in seven major cell types: tumour cells,
fibroblasts, ovarian stroma, endothelial cells, monocytes, T cells, and B
cells. We then examined expression of differential expressed and cell
type marker genes in these seven cell types and based on this rela-
belled two of them to better reflect the cell identity (B cells to B/plasma
cells based on the expression of IGHGI, IGHG3, JCHAIN; monocytes to
macrophages based on the expression of CCL3, CXCL8, HLA-DRA)
(Supplementary Fig. S17a, b).

Cells labelled as ovarian stroma and fibroblasts formed multiple
visually distinct cell groups. To explore possible subtypes, we extrac-
ted these cells from the dataset and reran principal component and
clustering analysis for this subset. We identified ten clusters (Supple-
mentary Fig. S17¢c, d). Cell identities were assigned to these clusters
based on their specific differentially expressed genes and cell type
gene markers.

Cluster 1 was characterised by high expression of contractile
genes including TAGLN, ACTA2, MYL9, MYH11, PLN and was labelled
Myofibroblasts. Cluster 6 was labelled Mesothelial cells based on
CALB2, MSLN, SLPI, KRTS, KRTI8 expression, as per Qian et al.”> and
Olbrecht et al.”. Cluster 3 showed high expression of COLIAL COLIA2,
COL3A1, SPARC, FNI and was labelled Fibro5 (FNI, COL3AI). In Cluster
8, CFD and RAMPI were the top DEGs, and the cluster was labelled
Fibro3 (RAMPI, CFD) - these cells might correspond to adipogenic
fibroblasts, as per Qian et al.”> and Olbrecht et al.”. Cluster 7 specifi-
cally overexpressed CCL2 and we labelled it Fibro4 (CCL2). Cluster 2
did not have genes strongly overexpressed with log.FC >1, but over-
expressed LUM, DCN, GSN with log.FC >= 0.5 and was labelled Fibro2
(RBP1, DCN). Cluster O and Cluster 5 were labelled Fibrol
(EIF4A3, STAR).

Cluster 4 showed high expression of stress response-related
genes, such as HSPA6, HSPA1B, DNAJBI, HSPAIA, hence we assumed it
corresponded to cells showing strong stress response and removed it
from the downstream analysis. Finally, Cluster 9 had high expression
of genes normally expressed in immune cells, such as B2M, CCL5, HLA-
A, HLA-B, CXCR4, and these cells co-clustered with T cells in the
superset, hence, we concluded this cluster corresponded to doublets
and removed it from the downstream analysis.

Final fine-grain annotations for the scRNA-seq dataset are shown
in Supplementary Fig. S18 and cell type labels for each of the cells are
available in Supplementary Data 11.

Visium data processing

FASTQ files were processed using Space Ranger 1.0.0 with GRCh38-
3.0.0 reference in the manual alignment mode. Filtered gene-barcode
matrices from Space Ranger output were used for downstream ana-
lyses; barcodes with less than 400 genes were excluded. Seurat v3 was
used for sample normalisation (SCTransform, mitochondrial and
ribosomal mapping percentage were regressed out), individual sample
clustering (using first 30 principal components), integration (anchor-
based method with 3000 variable genes), dimensionality reduction
and clustering (using first 30 principal components), and differential
expression analysis (Wilcoxon test)’’. Cellular composition of each
spot was deconvolved using robust cell type decomposition (RCTD)%.

CNA inference

InferCNV?’ was run for each sample independently using Visium spots
with RCTD tumour cell weights below 0.15 as a background. The fol-
lowing parameters were used to generate the CNA heatmaps: cutoff =
0.1, denoise=T, HMM = F. Spots in each sample were clustered using
the default parameters and the dendrogram was split into clusters with
visually distinctive CNA profiles. Then inferCNV was run again with
HMM =T to identify high-confidence CNAs across the clusters.

NanoString CosMx data analysis

By performing cell segmentation on CosMx data using Cellpose*, we
generated gene expression profiles for identified cells. With squidpy
(v1.2.1)*® and scanpy (v1.9.3)%, unsupervised graph-based clustering of
cells (Leiden algorithm, resolution parameter set to 2) identified 21
distinct clusters within the CosMx SP5 dataset of 20 fields of view
(FOVs). Marker genes were identified and used to manually annotate
these clusters, which were collapsed into 12 major cell types.

We utilised the generic coordinates of cells to construct a neigh-
bourhood graph based on the distance between two cells using the
squidpy library. If the distance is shorter than the given radius, then
these two cells are neighbours to each other and there is an edge
connecting these two cells in the neighbourhood graph. This approach
allowed us to identify cells that were physically close within each field
of view or across the entire sample. Subsequently, we generated a
neighbour count matrix by tallying the number of neighbours from
every cell type/cluster for each cell type/cluster. Each row of the matrix
represents the neighbour counts of all cell types/clusters associated
with a specific cell type/cluster. To facilitate comparison, we normal-
ised the counts by the total counts in each row, thereby expressing the
values as percentages that indicate the proportion of neighbours from
each cell type/cluster for a given cell type/cluster.

For neighbour enrichment and depletion testing, positions of
tumour cells were fixed and positions of cells of each other cell type
were randomised independently 1,000 times. For ratio significance
testing, positions of tumour cells were fixed, neighbouring cells were
selected for each of 3 radii and their labels were permuted 1,000 times.
Monte Carlo procedure was used to calculate empirical P values which
were then corrected for multiple testing using Benjamini-Hochberg
procedure. Threshold of 0.05 was used to define significance.

Cell-to-cell communication analyses

We used connectomeDB2020* supplemented with the following
updated ligand-receptor pairs: ANXA2-TLR4, CD24-SELE, CD24-L1CAM,
HMGBI1-CD24, CXCL10-ACKR2, CXCL17-CXCR4, CXCL17-ACKR3, CD24-
SIGLECIO, SIOOAS-TLR2 and removal of interactions involving
HSP90AALL Ligands and receptors detected in less than 10% of cells of a
given cluster were excluded from the analysis.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The scRNA-seq and Visium data are available from the Gene Expression
Omnibus (GEO) repository with the primary accession code
GSE211956. The NanoString CosMx data and code are available from
Zenodo (https://zenodo.org/records/10048057)"*. Source data for
plots in Fig. 3 are provided with this paper. The two public scRNA-seq
datasets reused in this study are available in the Gene Expression
Omnibus (GEO) database under accession code GSE165897** and from
http://blueprint.lambrechtslab.org?. The two public spatial tran-
scriptomics datasets reused in this study are available in the Gene
Expression Omnibus (GEO) database under accession code
GSF189843%° and from CodeOcean (https://codeocean.com/capsule/
1912679/tree/v1)*. The low pass whole genome sequence data is
deposited at dbGaP under accession code phs003561.v1.pl. The WGS
datais available under restricted access to protect the donor’s privacy.
Access to the data for cancer research purposes is via dbGaP and can
be requested by permanent employees of an institution at a level
equivalent to a tenure-track professor or senior scientist with labora-
tory administration and oversight responsibilities. The requests are
managed by the Data Access Committee of the NCI, and after approval,
access is granted for 12 months. Source data are provided with
this paper.

Code availability

Code for the CosMx analyses is available from Zenodo (https://zenodo.
org/records/10048057)". Visium and scRNA-seq data analyses used
standard tools that are cited in the manuscript.
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