342 research outputs found

    A filamentation instability for streaming cosmic-rays

    Get PDF
    We demonstrate that cosmic rays form filamentary structures in the precursors of supernova remnant shocks due to their self-generated magnetic fields. The cosmic-ray filamentation results in the growth of a long wavelength instability, and naturally couples the rapid non-linear amplification on small scales to larger length scales. Hybrid magnetohydrodynamics--particle simulations are performed to confirm the effect. The resulting large scale magnetic field may facilitate the scattering of high energy cosmic rays as required to accelerate protons beyond the knee in the cosmic-ray spectrum at supernova remnant shocks. Filamentation far upstream of the shock may also assist in the escape of cosmic rays from the accelerator.Comment: Accepted for publication in MNRA

    On the Cosmic Ray Driven Firehose Instability

    Full text link
    The role of the non-resonant firehose instability in conditions relevant to the precursors of supernova remnant shocks is considered. Using a second order tensor expansion of the Vlasov-Fokker-Planck equation we illustrate the necessary conditions for the firehose to operate. It is found that for very fast shocks, the diffusion approximation predicts that the linear firehose growth rate is marginally faster than its resonant counterpart. Preliminary hybrid MHD-Vlasov-Fokker-Planck simulation results using young supernova relevant parameters are presented.Comment: Contribution to the 6th International Symposium on High Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, Germany. To be published in the AIP Conference Proceeding

    Development of a prototype waste collection system /the Hydro-John/

    Get PDF
    Characteristics of prototype waste collection system for spacecraft application

    Modelling the Corona of HD 189733 in 3D

    Get PDF
    The braking of main sequence stars originates mainly from their stellar wind. The efficiency of this angular momentum extraction depends on the rotation rate of the star, the acceleration profile of the wind and the coronal magnetic field. The derivation of scaling laws parametrizing the stellar wind torque is important for our understanding of gyro-chronology and the evolution of the rotation rates of stars. In order to understand the impact of complex magnetic topologies on the stellar wind torque, we present three-dimensional, dynamical simulations of the corona of HD 189733. Using the observed complex topology of the magnetic field, we estimate how the torque associated with the wind scales with model parameters and compare those trends to previously published scaling laws.AS thank A. Vidotto for discussions about the modelling of the corona of HD 189733. This work was supported by the ANR 2011 Blanc Toupies and the ERC project STARS2 (207430). The authors acknowledge CNRS INSU/PNST and CNES/Solar Orbiter fundings. AS acknowledges support from the Canada’s Natural Sciences and Engineering Research Council and from the Canadian Institute of Theoretical Astrophysics (National fellow). We acknowledge access to supercomputers through GENCI (project 1623), Prace, and ComputeCanada infrastructures

    Ultra-high energy Inverse Compton emission from Galactic electron accelerators

    Full text link
    It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein-Nishina suppression of inverse Compton emission from electrons. However, in the presence of inverse Compton dominated cooling, hard high-energy electron spectra are possible. We show that the environmental requirements for such spectra can naturally be met in spiral arms, and in particular in regions of enhanced star formation activity, the natural locations for the most promising electron accelerators: powerful young pulsars. Our scenario suggests a population of hard ultra-high energy sources is likely to be revealed in future searches, and may also provide a natural explanation for the 100 TeV sources recently reported by HAWC.Comment: Accepted for publication in ApJ

    Probing Nearby CR Accelerators and ISM Turbulence with Milagro Hot Spots

    Full text link
    Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their subsequent propagation through the random magnetic field of the Galaxy deem to result in an almost isotropic CR spectrum. Yet the MILAGRO TeV observatory discovered a sharp (10)\sim10^{\circ}) arrival anisotropy of CR nuclei. We suggest a mechanism for producing a weak and narrow CR beam which operates en route to the observer. The key assumption is that CRs are scattered by a strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly because this direction is also the direction of minimum of the large scale CR angular distribution, the enhanced scattering results in a weak but narrow particle excess. The width, the fractional excess and the maximum momentum of the beam are calculated from a systematic transport theory depending on a single scale ll which can be associated with the longest Alfven wave, efficiently scattering the beam. The best match to all the three characteristics of the beam is achieved at l1l\sim1pc. The distance to a possible source of the beam is estimated to be within a few 100pc. Possible approaches to determination of the scale ll from the characteristics of the source are discussed. Alternative scenarios of drawing the beam from the galactic CR background are considered. The beam related large scale anisotropic CR component is found to be energy independent which is also consistent with the observations.Comment: 2 figures, ApJ accepted version2 minor changes and correction

    Escape-limited Model of Cosmic-ray Acceleration Revisited

    Full text link
    The spectrum of cosmic rays (CRs) is affected by their escape from an acceleration site. This may have been observed not only in the gamma-ray spectrum of young supernova remnants (SNRs) such as RX J1713.7-3946, but also in the spectrum of CRs showering on the Earth. The escape-limited model of cosmic-ray acceleration is studied in general. We discuss the spectrum of CRs running away from the acceleration site. The model may also constrain the spectral index at the acceleration site and the ansatz with respect to the unknown injection process into the particle acceleration. We apply our model to CR acceleration in SNRs and in active galactic nuclei (AGN), which are plausible candidates of Galactic and extragalactic CRs, respectively. In particular, for young SNRs, we take account of the shock evolution with cooling of escaping CRs in the Sedov phase. The spectrum of escaping CRs generally depends on the physical quantities at the acceleration site, such as the spectral index, the evolution of the maximum energy of CRs and the evolution of the number of CRs. It is found that the spectrum of run-away particles can be both softer and harder than that of the acceleration site. The model could explain spectral indices of both Galactic and extragalactic CRs produced by SNRs and AGNs, respectively, suggesting the unified picture of CR acceleration.Comment: 11 pages, 2 figures, submitted to Astronomy and Astrophysic

    Investigating the Cosmic-Ray Ionization Rate Near the Supernova Remnant IC 443 Through H3+ Observations

    Get PDF
    Observational and theoretical evidence suggests that high-energy Galactic cosmic rays are primarily accelerated by supernova remnants. If also true for low-energy cosmic rays, the ionization rate near a supernova remnant should be higher than in the general Galactic interstellar medium (ISM). We have searched for H3+ absorption features in 6 sight lines which pass through molecular material near IC 443---a well-studied case of a supernova remnant interacting with its surrounding molecular material---for the purpose of inferring the cosmic-ray ionization rate in the region. In 2 of the sight lines (toward ALS 8828 and HD 254577) we find large H3+ column densities, N(H3+)~3*10^14 cm^-2, and deduce ionization rates of zeta_2~2*10^-15 s^-1, about 5 times larger than inferred toward average diffuse molecular cloud sight lines. However, the 3 sigma upper limits found for the other 4 sight lines are consistent with typical Galactic values. This wide range of ionization rates is likely the result of particle acceleration and propagation effects, which predict that the cosmic-ray spectrum and thus ionization rate should vary in and around the remnant. While we cannot determine if the H3+ absorption arises in post-shock (interior) or pre-shock (exterior) gas, the large inferred ionization rates suggest that IC 443 is in fact accelerating a large population of low-energy cosmic rays. Still, it is unclear whether this population can propagate far enough into the ISM to account for the ionization rate inferred in diffuse Galactic sight lines.Comment: 14 pages, 3 figures, 4 table
    corecore