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ABSTRACT
We demonstrate that cosmic rays form filamentary structures in the precursors of supernova
remnant shocks due to their self-generated magnetic fields. The cosmic ray filamentation
results in the growth of a long-wavelength instability, and naturally couples the rapid non-linear
amplification on small scales to larger length-scales. Hybrid magnetohydrodynamics–particle
simulations are performed to confirm the effect. The resulting large-scale magnetic field may
facilitate the scattering of high-energy cosmic rays as required to accelerate protons beyond
the knee in the cosmic ray spectrum at supernova remnant shocks. Filamentation far upstream
of the shock may also assist in the escape of cosmic rays from the accelerator.
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1 IN T RO D U C T I O N

It is generally accepted that Galactic cosmic rays are accelerated
in supernova remnants. The process of diffusive shock accelera-
tion (Axford, Leer & Skadron 1977; Krymskii 1977; Bell 1978;
Blandford & Ostriker 1978) remains the most likely mechanism for
producing and maintaining the observed spectrum. There is now a
growing wealth of observational evidence supporting this scenario.
The detection of TeV γ -ray emission from nearby remnants con-
firms the presence of electrons, and possibly protons, with energies
of at least 1014 eV (e.g. Hinton & Hofmann 2009). In addition, high-
resolution observations of narrow non-thermal X-ray filaments at
the outer shocks of several shell-type supernova remnants favour a
model in which the highest energy electrons are produced directly
at the shock, consistent with the predictions of diffusive shock ac-
celeration (e.g. Vink & Laming 2003; Bamba et al. 2005; Uchiyama
et al. 2007). These filaments also provide evidence for strong mag-
netic field amplification in the vicinity of the shock. The generation
of strong magnetic turbulence is vital for the acceleration of cosmic
rays to the knee (∼1015.5 eV) and above (Lagage & Cesarsky 1983;
Bell & Lucek 2001).

While several mechanisms for amplifying magnetic fields to val-
ues in excess of the shock-compressed interstellar fields have been
proposed, those that result in the transfer of upstream cosmic ray
streaming energy to the magnetic field are of greatest relevance for
diffusive shock acceleration. The non-resonant mode first identified
by Bell (2004) has been demonstrated to grow rapidly; however, the
characteristic wavelength of the amplified field is predominantly on
a length-scale shorter than the gyroradius of the driving particles.
Under certain conditions, other short-wavelength instabilities may
dominate (e.g. Bret 2009; Lemoine & Pelletier 2010; Riquelme &
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Spitkovsky 2010; Nakar, Bret & Milosavljević 2011). While such
instabilities may be sufficient to explain the large magnetic field
values inferred from observations, in order to facilitate rapid accel-
eration to higher energies, it is necessary to generate field structure
on scales comparable with the gyroradius of the highest energy
particles (Bell & Lucek 2001; Reville et al. 2008).

The generation of large-scale field structures has been investi-
gated in the context of filaments, or beams, in Bell (2005), where a
pre-existing profile for the cosmic ray distribution was assumed. In
this paper, we demonstrate that the distribution of relativistic parti-
cles is inherently non-uniform and that filamentation occurs as a nat-
ural consequence of cosmic ray streaming. A similar phenomenon
occurs in laser plasmas whereby photon beams form filaments
due to thermal self-focusing in expanding cavities (e.g. Craxton &
McCrory 1984). We show here that in the case of cosmic rays, this
process results in the growth of magnetic field on large scales. The
development of the filamentation and large-scale field is investigated
analytically in a two-dimensional (2D) slab symmetric geometry,
and verified using hybrid particle–magnetohydrodynamic (MHD)
simulations. The non-linear feedback between ultra-relativistic par-
ticles and the background plasma, and the resulting large-scale fields
will have important implications for the acceleration of cosmic rays
to energies above the knee in supernova remnants, and also their
escape.

The outline of the paper is as follows. In the next section, we de-
velop the analytic model that describes the cosmic ray filamentation.
It is demonstrated that this introduces a long-wavelength instabil-
ity in the precursors of supernova remnant shocks. In Section 3,
we report on the numerical code used to investigate the instability,
and present simulation results. The relevant time and length-scales
inferred from theory and observations are addressed in Section 4.
We conclude with a discussion of the implications for cosmic ray
acceleration and escape of cosmic rays upstream of the shock in
supernova remnants in the context of filamentation.

C© 2011 The Authors
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2434 B. Reville and A. R. Bell

2 C OSMIC R AY FILAMENTATION

Within the diffusion approximation of shock acceleration theory, a
first-order anisotropy is introduced in the upstream particle distribu-
tion as a result of the gradient in the isotropic part of the distribution.
For a shock front propagating in the positive x-direction, with veloc-
ity ush, the resulting steady-state test-particle solution is (e.g. Drury
1983)

F (x, p) = f0(x, p)
(

1 + 3
ush

c
cos θ

)
, (1)

where f 0(x, p) is the isotropic part of the spectrum as measured
in the upstream rest frame, and θ is the particle pitch angle with
respect to the shock normal. It is generally understood that the cur-
rent associated with the anisotropic part of the upstream particle
distribution drives the growth of MHD instabilities. The resulting
turbulent magnetic fields mediate the scattering that maintains the
cosmic rays’ quasi-isotropic distribution, ensuring a high probabil-
ity that particles repeatedly cross the shock before escaping.

To investigate the behaviour in higher dimensions, it is convenient
to use the Vlasov equation, which for ultra-relativistic particles can
be written in the form

∂f

∂t
+ c

p
p

· ∇f + e (E + v × B) · ∂f

∂ p
= 0. (2)

In a reference frame in which the upstream cosmic rays are isotropic,
the distribution function f (x, p, t) is dependent only on the length
of the momentum vector, not its direction, and it is straightforward to
show that the magnetic field term makes no contribution. It follows
that the only force relevant for calculating the particle distribution
is that due to the local electric field. On average, the upstream
cosmic ray distribution is isotropic in the rest frame of the shock
(McClements, Dendy, Drury & Duffy 1996). Neglecting the bulk
deceleration of the incoming plasma due to the cosmic ray pressure
gradient, the background plasma in this frame moves towards the
shock with velocity u = −ush x̂+δu, where δu are the superimposed
background fluid motions due to the cosmic ray current and x̂ is the
unit vector along the direction of the shock normal. Conservation
of momentum dictates that these motions are small compared to
the shock velocity |δu| � ush, and to lowest order the local electric
field is, in the ideal MHD limit, E = ush x̂ × B⊥. While this analysis
is valid for all shock obliquities, we focus here on self-generated
magnetic fields B⊥ due to current-driven instabilities.

To investigate the role of filamentation in the plane normal to
the direction of the cosmic ray streaming, we neglect the cosmic
ray pressure gradient in the precursor, and restrict the analysis to
the case of slab symmetry in the x-direction. Introducing the vector
potential B = ∇ × A, the local electric field is

E = ush∇A‖(y, z), (3)

where the scalar potential is A‖ = A · x̂. Inserting into equation (2),
the distribution function, when observed in a reference frame in
which the shock is at rest, evolves according to

∂f

∂t
+ c

p
p

· ∇f + e∇(ushA‖) · ∂f

∂ p
= 0, (4)

where ushA‖ plays the role of the effective electric field potential
(e.g. Krall & Trivelpiece 1973, section 8.17). On the slowly evolving
MHD time-scales, the cosmic ray distribution will progress through
equilibrium states

∂f (ε)

∂t
= 0, where ε = p − eushA‖/c.

It follows that the phase-space distribution of the cosmic rays con-
sists of surfaces of equal density on the momentum iso-surfaces ε.
Hence, if ∂f /∂p < 0, as is almost certainly the case, the cosmic
ray number density will be locally larger (smaller) in regions of
positive (negative) A‖. Specifically, if p � eush|A‖|/c, making a
Taylor expansion, the number density as a function of position is

ncr(y, z) = n0 + eushA‖
c

∫
8πpf0dp, (5)

where we have performed an integration by parts. Here, f 0 is the
unperturbed part of the spectrum and n0 = ∫

4πp2f0dp is the
associated uniform number density. Note that the correlation with
A‖ is dependent on the choice of orientation. If the upstream instead
was chosen to lie in the half-plane x < 0, the density and vector
potential would anti-correlate. In addition, the correlation is charge
dependent, such that in the precursor, the electrons and protons will
anti-correlate. Since the number density of non-thermal particles is
very much less than that of the background plasma, on the length-
scales of interest, charge neutrality is always maintained.

The growth of the magnetic field is driven by the resulting cos-
mic ray current. Transforming back to the upstream frame, from
equation (5), it follows that the cosmic ray current is also a function
of position

jcr(y, z) = j0 + χ (A‖ − 〈A‖〉), (6)

where the additional term 〈A‖〉 has been added to conserve total
particle number. Since lower energy particles are confined closer
to the shock, the distribution is expected to fall off rapidly below
a minimum momentum pmin, where pmin(x) increases with distance
from the shock (e.g. Eichler 1979). Assuming a power-law spectrum
f 0(p > pmin) ∝ p−4,

χ = e2u2
sh

c

∫
8πpf0dp = e2n0u

2
sh

pminc
.

It has been implicitly assumed here that the distribution function is
gyrotropic such that j cr × x̂ = 0. This naturally holds on scales
larger than the cosmic ray gyroradius, but also on smaller scales
provided small-angle scatterings on the background field are suffi-
ciently frequent. All of these results have been verified using high-
resolution hybrid simulations (see Section 3).

The role of a single cosmic ray filament, or beam, with fixed cos-
mic ray current has previously been investigated in Bell (2005). We
have demonstrated here that the cosmic ray current is in fact fila-
mentary in general. This will alter the growth of plasma instabilities,
and in the next section we investigate this effect.

2.1 Filament growth

The amplification of magnetic fields in the precursors of super-
nova remnant shocks is a multi-scale problem. While the non-linear
growth of a magnetic field, driven by cosmic ray currents, has been
demonstrated via numerical simulations (e.g. Bell 2004; Ohira et al.
2009; Riquelme & Spitkovsky 2009; Stroman, Pohl & Niemiec
2009), most simulations have focused exclusively on field ampli-
fication on small scales. This is primarily due to the fact that, on
larger length-scales, it becomes necessary to include the dynamics
of the cosmic rays (Lucek & Bell 2000). We use the analysis of the
previous section to self-consistently model the interaction between
the background plasma and the cosmic rays.

Following Bell (2005), we analyse the MHD equations with an
external cosmic ray current, neglecting the role of pressure gradients

C© 2011 The Authors, MNRAS 419, 2433–2440
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and magnetic tension

∂B
∂t

= ∇ × (u × B), (7)

ρ
du
dt

= − j cr × B, (8)

valid in the long-wavelength approximation. Also, from equa-
tion (7), the vector potential satisfies

∂A
∂t

= u × (∇ × A). (9)

Returning to the 2D analysis of the previous section, i.e. zero gra-
dient in the direction of cosmic ray streaming, it follows that the
parallel component of the vector potential is constant for a particular
fluid element

dA‖
dt

= 0. (10)

This has a number of important consequences. From equation (6),
the cosmic ray current will increase in regions of large A‖. Con-
sidering an idealized axisymmetric system, with maximum A‖, is
centred on the origin, Bθ = −∂A‖/∂r > 0, at least locally. Hence,
the resulting − j cr × B force acts to push the plasma radially out-
wards. This spreads the region of large A‖, thus focusing more
cosmic rays into the filament, leading to a runaway instability. In a
2D slab symmetric geometry, this results in the spreading out of flat
tabletop structures with large A‖ surrounded by regions of negative
A‖, with large gradients in between. This is similar to the picture
presented in Bell (2005, section 3), where the cosmic ray current
was fixed, and the growth rate for the expansion of cavities was
found to be

	nr =
(

jcrBθ

rρ0

)1/2

, (11)

with r the radius of the cavity and Bθ the magnetic field strength
on that scale. Here, the focusing of the cosmic rays into the cavities
will enhance the growth rate as compared with the constant current
case, since jcr is larger in the filaments.

For growth on small scales, the orientation of the magnetic field
must be favourable. Considering a field configuration such that at

early times an equal number of small-scale loops of both polariza-
tions are randomly located within a circle of radius r0, as shown
in Fig. 1, the effect of the cosmic ray current is to expand loops
of one orientation and contract the other. The net result is that the
small-scale loops are predominantly of a single polarization at late
times. This corresponds to a net current in the direction of the cos-
mic ray streaming when averaged over the area enclosed by r0, i.e.
〈∇ × B · x̂〉 �= 0. As the total current enclosed by r0 increases,
the magnetic field Bθ0 on this scale must likewise increase. Unlike
the small-scale fields, however, the growth will be independent of
orientation.

To quantify the above simple picture, we combine equations (6),
(7) and (8), together with the equation ∂A/∂t = u × B, to give the
following expression for the evolution of the filamentation:

∂2jcr

∂t2
= χB2

⊥
ρ

jcr + ([(u · ∇)u] · ∇) jcr − (u · ∇)
∂jcr

∂t
. (12)

The second two terms on the right-hand side of equation (12) rep-
resent the advection of A‖ with the flow. On small scales, where
the velocity gradients are steep, these terms dominate over the first
term. However, since the continued expansion of small-scale loops
is eventually inhibited by neighbouring cavities (Bell 2004; Reville
et al. 2008), on sufficiently large length-scales the first term will
dominate. The ordering of these terms will be verified in Section 4.

Neglecting the last two terms in equation (12), we find the fol-
lowing growth rate for the filamentation instability:

	fil =
√

χB2
⊥

ρ
= η

(ush

c

)2
(

Ucr

ρu2
sh

)1/2
eB rms

⊥
γminm

, (13)

where Ucr is the cosmic ray energy density, γ min = pmin/mc is the
Lorentz factor of the lowest energy cosmic rays driving the insta-
bility (i.e. those satisfying pminc � eushA‖), and η is a numerical
factor that depends on the shape of the cosmic ray spectrum. For
a spectrum f ∝ p−4 in the momentum interval (pmax > p > pmin),
this parameter is η = 1/

√
ln(pmax/pmin). The growth rate is scale

independent and depends only on the root mean square of the per-
pendicular magnetic field enclosed on that scale, as expected from
the qualitative description above. Since the non-resonant mode dis-
cussed in Bell (2004) has a growth rate that decreases monotoni-
cally with increasing wavelength, the filamentation must dominate

Figure 1. Illustration of the behaviour on different length-scales. j cr is the cosmic ray current, and j ret = (∇ × B)/μ0 − j cr is the return current carried by the
background plasma. The small-scale circles represent the expanding loops of the magnetic field of a particular handedness. At early times (left), the magnetic
field contains loops of both orientations having comparable strength, and the cosmic ray current is approximately uniform. Since only loops with favourable
orientation can grow, in this example counterclockwise, the cosmic rays are focused into these expanding loops, while clockwise loops contract. At later times
(right), the large-scale magnetic field Bθ0 on scale r0 enclosing the smaller expanding loops will have increased.

C© 2011 The Authors, MNRAS 419, 2433–2440
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2436 B. Reville and A. R. Bell

the amplification of magnetic field on some scale. However, for the
growth rate of the filamentation instability to be sufficiently rapid
to influence the scattering of high-energy cosmic rays, the mean
squared magnetic field on small scales must be amplified to values
well in excess of the ambient field. Thus, the filamentation instabil-
ity can be considered as a bootstrap to the non-resonant instability
described in Bell (2004, 2005). The necessary conditions for the
filamentation to play an important role are discussed in detail in
Section 4.

The transfer of magnetic energy from small scales to longer
wavelengths in the context of diffusive shock acceleration has previ-
ously been suggested to occur via an inverse cascade (e.g. Pelletier,
Lemoine & Marcowith 2006; Diamond & Malkov 2007). Whether
this cascade can bridge the large separation of scales remains uncer-
tain. The mechanism described here presents a different approach
where the coupling of the scales is mediated by the filamentation.
The coupling of small- and large-scale magnetic fields has also been
found in simulations of sheared flows with small-scale turbulence
(Yousef et al. 2008) in the context of mean-field dynamo theory.
This approach has also recently been applied to the case of precur-
sors with an external cosmic ray current (Bykov, Osipov & Ellison
2011; Schure & Bell 2011).

3 N U M E R I C A L S I M U L AT I O N S

Numerical simulations are performed to verify the analysis of the
previous section. To investigate these processes, it is necessary to
have a kinetic description of the cosmic rays. A code has been de-
veloped similar to that described by Zachary & Cohen (1986) and
Lucek & Bell (2000), where the background plasma is treated as an
MHD fluid and the cosmic rays are treated using a particle-in-cell
(PIC) approach. This method is appropriate for modelling plasmas
in which there exists a large separation between the relevant length
and time-scales associated with the thermal and non-thermal parti-
cles’ kinetics. Unlike full PIC simulations, which solve Maxwell’s
equations directly, our simulations use the magnetic and electric
fields determined from the MHD equations, i.e. the electric field is
determined from ideal MHD E = −u × B, and the displacement
current is neglected. The cosmic rays are evolved in these fields
by integrating the relativistic equations of motion using the Boris
method (e.g. Birdsall & Langdon 1985) and the resulting current
and charge densities are deposited on the grid at each particle up-
date using the approach of Umeda et al. (2003). Since the particles
typically evolve on a shorter time-scale than the background MHD,
it is necessary to integrate particle trajectories over several sub-
cycles within each MHD update (Zachary & Cohen 1986). While
this multiplies the effective number of particles in the simulation, it
can also smooth out phase correlations associated with the cosmic
ray current (Zachary et al. 1989; Lucek & Bell 2000). The cou-
pled MHD–cosmic ray equations are solved using a finite-volume
Godunov scheme, as described in Reville et al. (2008), with the
self-consistent inclusion of temporal and spatially varying current
and charge densities jcr, Qcr.

The simulations are run using a 2D slab symmetric geometry,
as in the analysis of the previous section, with a periodic grid
in the y–z plane, and the cosmic ray anisotropy directed out of
the simulation plane in the positive x-direction. The particles are
initialized as a mono-energetic distribution with a net drift velocity.
Maintaining gyrotropy in the simulations and thus minimizing j⊥
due to particle noise, requires that a large number of particles per
cell be used. For the results shown in this paper, the particles are
initialized with 1024 per cell. To minimize the noise in the particle

distribution at t = 0, the discrete particle momentum vector in
spherical coordinates, φi and μi, is chosen in an ordered manner,
such that it satisfies the required distribution globally to a high
degree of accuracy. Here, μ = +1 corresponds to the positive x-
direction. This is achieved by choosing the azimuthal angles with
uniform spacing as φi = 2πM(−1)i i/(N − 1) for i = 0, . . . , N,
where N is the total number of particles and M is the number of
complete rotations through 2π required. We found best results for
M = 3. Having too many or too few revolutions in φ at pitch angles
μ close to zero can result in a numerically introduced anisotropy in
the perpendicular direction after only a relatively small number of
time steps. The particle cosines μi are chosen between μi = −1, . . . ,
1 with decreasing spacing �μi such that the total distribution has a
net drift with the required velocity. Finally the particles are scattered
in the y–z plane using mixed radix bit-reversed fractions (Birdsall
& Langdon 1985).

The 2D magnetic field is initialized by taking a sum of Fourier
modes in A‖ sampled from a user-defined spectrum, having ran-
dom wave vectors k in the y–z plane (see e.g. Giacalone & Jokipii
1999). For the results shown in Fig. 2, we used a 2D Fourier spec-
trum A2

‖(k) ∝ 1/[1 + (kLc)3], such that a perpendicular magnetic
field will have a power spectrum peaking close to the length Lc.
Several different forms for the power spectrum have been used, and
the general results are the same. The computational grid is a 512 ×
512 square mesh with periodic boundary conditions in the y- and
z-directions. The grid resolution is �x = 0.5, where dimensionless
length units are chosen such that mc/eB0 = 1 with B0 the mean mag-
netic field strength out of the plane. The Fourier modes were selected
with uniform logarithmic spacing on the interval 4 < k/2π < 256
with Lc = 16, such that most of the magnetic field structure is on
scales much smaller than the size of the box. The total magnetic field
is then calculated by taking the curl, and projecting on to the grid
using central differencing B = B0 x̂ + ∇ × A‖ x̂. This guarantees
that the field is divergence free.

The thermal background is initialized at rest with uniform density
and pressure. The cosmic ray current and charge densities are also
initially uniform, to within noise levels on the grid. A rather large
shock velocity of ush = 0.5c is used to enhance the anisotropy. If the
departure from isotropy is too small, a much larger number of parti-
cles are required to accurately model the perturbations to the cosmic
ray current. Since the shock velocity only appears in the determi-
nation of the cosmic ray anisotropy, the use of the non-relativistic
MHD equations remains valid. The numerical parameters are cho-
sen to represent values that might be expected in a young supernova
remnant: mncr/ρ0 = 10−6 and vA/c = 5 × 10−4. The particle momen-
tum is chosen such that the gyroradius is resolved in the simulation
box, and for the results shown in Fig. 2, the particle gyroradius is
rg = 20(B/B0)−1. We note that with this low minimum cosmic ray
energy and high shock velocity, the total cosmic ray energy den-
sity is Ucr/ρ0u

2
sh ≈ 10−4, which is considerably smaller than what

is expected in young supernova remnants. These parameters have
been chosen such that the various physical processes can be easily
identified in the simulations, although could also indicate that the
effect should exist even in shocks that are accelerating very ineffi-
ciently. In reality, for young supernova remnants, the shock velocity
would be an order of magnitude smaller and the typical cosmic ray
energy several orders of magnitude larger, where Ucr/ρ0u

2
sh can be

as large as 30 per cent (e.g. Malkov & O’C Drury 2001). Simu-
lations with a much higher energy density resulted in extremely
rapid evacuation of zero-density cavities in the background fluid
which provided insufficient time to study the growth of the magnetic
field.

C© 2011 The Authors, MNRAS 419, 2433–2440
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Figure 2. Time-dependent growth of the filamentation. y-z plots of A‖, ncr/n0, j‖/〈j‖〉 and ρ at t = 0.1, 2, 4 and 6. Cosmic ray current is in the positive
x-direction (out of the plane). Details of the simulation parameters are given in the text.

3.1 Results

The evolution of A‖, ncr, j‖ and ρ is shown in Fig. 2. The correlation
between the vector potential and cosmic ray number density, as
represented by ncr, can clearly be seen. The cosmic ray filamentation
also results in the creation and expansion of low-density cavities in
the thermal plasma. There also exists a correlation between the
cosmic ray current j‖ and the potential A‖, although the features
are not as sharp as with ncr. As shown in the previous section,
the correlation between A‖ and ncr is due to fluctuations in the
isotropic component f 0. The current, on the other hand, depends
on higher order expansions in the anisotropy of the cosmic ray
distribution and is much more difficult to capture numerically, but
is clearly evident at early times. As the simulation progresses, the
net streaming of cosmic rays is gradually reduced. This is always
to be expected in simulations of this type (e.g. Lucek & Bell 2000),
since the work done on the background plasma by the cosmic rays is
δW = − j cr · E, i.e. in order to extract energy from the cosmic rays,
the background plasma must generate an opposing electric field.
Thus, the bulk cosmic ray drift motion will be gradually decelerated,
causing the correlation between j‖ and A‖ to become weaker as the
simulation progresses. The opposing electric field will be strongest

in the walls surrounding the cavities, which can account for the anti-
correlations found on small scales around regions of large A‖ at late
times. The correlation on large scales is nevertheless evident even
at the end of the simulation, despite a 13 per cent reduction in the
net streaming velocity. In a real system, the cosmic ray streaming is
continually fed by the cosmic ray pressure gradient, an effect that
cannot be captured with our numerical approach.

The growth of tabletop features in the 2D plots of A‖ is also
observed. As discussed in Section 2, in two dimensions, the value
of A‖ cannot increase, but regions where A‖ is large spread out
to form the features seen in the top row of Fig. 2. It follows from
equation (6) that the same must hold for the cosmic ray current. In
a 3D situation, any gradients in the x-direction will act as a source
term in equation (9), allowing the possibility of amplifying A‖,
resulting in continued self-focusing of the cosmic rays. This may
have important implications for the upstream escape of cosmic rays
from supernova remnants. We discuss this further in Section 5.

The magnetic fields at the beginning and end of the simulation
are shown in Fig. 3. As found in previous simulations, regions of
the strongest magnetic field are concentrated in walls surrounding
the low-density cavities (Bell 2004, 2005; Reville et al. 2008). The
cavities are produced by the − j cr×B⊥ force expanding low-density

C© 2011 The Authors, MNRAS 419, 2433–2440
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2438 B. Reville and A. R. Bell

Figure 3. Plot of |B⊥| at beginning (t = 0) and end (t = 8) of the simulation.
Regions of the strong magnetic field wrap around the cosmic ray filaments
where the gradients in A‖ are steep. Cavities are found to develop on a range
of scales, in some cases with larger loops enclosing smaller loops.

cavities with the magnetic field frozen in to the background plasma.
The largest loops appear to be on scales of r ∼ L/10, where L is the
size of the simulation box. To investigate the growth of the magnetic
field on larger scales than this, we perform a Fourier analysis of
the field. The evolution of the power spectrum for B⊥ is shown in
Fig. 4. It can be seen that structures on all wavelengths kL/2π < 20
grow monotonically with time. Since much of this structure is due
to the expanding cavities, we focus on the growth of modes with
kL/2π < 10, which appear to grow almost scale independently,
as expected for the filamentation instability. The average measured
growth rate is ∼0.25	fil, assuming ush = 0.5c in equation (13). As
already mentioned, in the simulations, the cosmic ray drift velocity
is reduced as the simulation progresses, which may account for this
reduction in comparison with the theoretically predicted growth
rate, which assumed ush fixed. The resulting effect on the j‖–A‖
correlation may also contribute.

The simulations were terminated when the plasma density fell
below a certain threshold. In the 3D simulations of Bell (2004), the
expanding cavities can merge as field lines slide over one another,
a feature that cannot be reproduced in two dimensions. Future 3D
simulations will allow longer time evolution and address the issue
of saturation of the large-scale magnetic field structure.

Figure 4. Fourier power spectrum of B⊥ at t = 0, 2, 4, 6 and 8, in ascending
order for kL/2π < 10, where L is the length of the sides of the simulation
grid.

Finally, we emphasize that the primary difficulty in the numer-
ical identification of the instability is choosing parameters such
that the filamentation instability dominates on sufficiently small
length-scales, in comparison with the size of the simulation box.
Ultimately, due to the memory limitations, we are left with a rel-
atively small dynamical range for which a Fourier analysis can be
carried out, approximately one order of magnitude. In future simu-
lations, using a different numerical technique, we hope to extend the
dynamical range by at least an order of magnitude, and furthermore,
to investigate the role of filamentation in three dimensions.

4 A PPLI CATI ON TO D I FFUSI VE SHOCK
AC C E L E R AT I O N

Observations of synchrotron X-ray emission in the vicinity of the
shock suggest the presence of magnetic fields on the order of 100 μG
or even larger in several supernova remnants. Recent observations
have also identified the presence of a precursor in SN1006, where
it is suggested that the implied field strengths are larger than the
typical interstellar value (Rakowski et al. 2011), providing tenta-
tive evidence for field amplification due to the presence of cosmic
rays. If these large fields are generated via cosmic ray stream-
ing, the mechanism must account for amplification from typical
seed fields BISM ∼ 3–5 μG. Numerical simulations of cosmic ray
current-driven instabilities on small scales suggest non-linear am-
plification of the fields to values B rms

⊥ ∼ 30BISM ≈ 100 μG (Bell
2004; Riquelme & Spitkovsky 2009). This amplification is believed
to occur far upstream where only the highest energy particles inter-
act with the interstellar medium turbulence (Zirakashvili & Ptuskin
2008; Reville, Kirk & Duffy 2009). The characteristic length-scale
of the fields produced by the non-resonant instability is on too small
a scale to reduce the mean-free path λMFP of the highest energy
cosmic rays, as required to accelerate them beyond the Lagage–
Cesarsky limit (Lagage & Cesarsky 1983). To increase the acceler-
ation rate of the highest energy cosmic rays, the diffusion coefficient
κ ≈ λMFPc must be significantly reduced below its Bohm limit in
the pre-amplified field, where the mean-free path is equal to the
gyroradius λMFP = rg. If the small-scale fields are indeed amplified
to the levels inferred from observations far upstream of the shock
via the non-resonant instability, as we show here, the filamentation
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instability can grow on a sufficiently short time-scale to have an
appreciable influence on the diffusion of the highest energy cosmic
rays.

From the expression for the growth rate given in equation (13),
it can be seen that the filamentation instability operates most effec-
tively in strongly amplified small-scale turbulence, and when the
cosmic rays driving the instability have lower minimum energy.
However, if the energy of the cosmic rays driving the filamentation
instability is too small, the particles will be trapped. This condition,
as derived in Section 2 is pc � eA‖ush. Using the fiducial values
from Bell (2004) (equation 21) k−1

max ≈ 2×1013 m, the filamentation
operates provided

Emin � eA‖ush ∼ ek−1
maxB⊥ush

≈ 1012

(
B⊥

100 μG

) (
kmax

2 × 1013 m

)−1 ( ush

107 m s−1

)
eV.

(14)

TeV γ -ray observations of most historical supernova remnants pro-
vide conclusive evidence for the presence of cosmic rays, either
protons or electrons, that satisfy this condition.

To investigate which mechanism determines the transport proper-
ties of the highest energy cosmic rays in the precursor, we compare
the growth rate of the filamentation instability to that of the stream-
ing instability given in Bell (2004), which has a growth rate

	nr =
√

jcrB0k

ρ
for kmax > k > r−1

g . (15)

This expression is equivalent to equation (11) on replacing Bθ /r by
kB0 (cf. Bell 2005). For k < r−1

g , ion-cyclotron resonance takes
over and the growth rate steepens ∝k. Hence, the growth rate 	nr

can be considered an upper limit for all k.
Since the magnetic field amplified by the non-resonant instability

is on too small a scale to effectively scatter the highest energy cosmic
rays driving the growth, i.e. those with E � Emax, these particles
will continue to gyrate about the mean field B0. On the scale of
the gyroradius of these particles k = eB0c/Emax, the ratio of the
growth rate of the filamentation instability, equation (13), to the
non-resonant instability is

	fil

	nr
≈ B rms

⊥
B0

√
ush

c

Emax

Emin
, (16)

where Emin is the corresponding energy dominating the cosmic ray
current. We note here that the small-scale fields are amplified over a
distance much less than the scale-height of the precursor at the outer
extremity of the precursor ≈κ(Emax)/ush, suggesting that Emax/Emin

should not greatly exceed unity. Thus, provided the small-scale
fields can be driven to non-linear values, the filamentation instability
will play a dominant role in generating the fields required to scatter
the highest energy cosmic rays in supernova remnants.

The two growth rates are equal when

krg = ush

c

〈
B2

⊥
〉

B2
0

, (17)

where rg = Emin/eB0c. This indicates, to order of magnitude, the
length-scale above which the filamentation dominates over the non-
resonant mode. Substitution of the parameters used in the simula-
tions suggests that the transition occurs at kL/2π ∼ 10, in agree-
ment with what was found. In addition, comparing the terms in
equation (12), it is readily seen that equation (17) corresponds to
the scale on which the first term becomes comparable with the other
terms.

To demonstrate the important role played by the filamentation
instability, we calculate the growth rate using typical parameters
for young supernova remnants. Assuming that the magnetic field is
amplified initially on small length-scales to a level comparable with
those inferred from observations, the typical time-scale for growth
of the magnetic field on long wavelengths by the filamentation
instability can be as short as

	−1
fil ≈ 50

( η

0.2

)−1
(

Ucr/ρu2
sh

0.1

)−1/2 ( ush

107 m s−1

)−2

×
(

B rms
⊥

100 μG

)−1 (
Emin

1014 eV

)
yr. (18)

The value of Emin driving the growth is the largest uncertainty. At
the onset of the filamentation, provided the lower energy cosmic
rays satisfy the condition (14), the growth can be extremely rapid.
As the magnetic fields evolve, the scale of the filaments becomes
comparable to the gyroradius of the lower energy particles, such
that Emin should remain large. Saturation may occur when the high-
energy particles become trapped on the self-generated large-scale
fields. This will almost certainly affect the diffusion of cosmic rays
and may even alter the transport properties of particles at different
energies, which can influence the shape of the spectrum (Kirk, Duffy
& Gallant 1996). Future simulations in three dimensions will help
to elucidate this process further.

5 D I SCUSSI ON

While the filamentation of photon or high-energy electron beams in
laboratory laser-plasma experiments is a well-studied phenomenon
(e.g. Craxton & McCrory 1984), its analogy with cosmic rays has
largely been overlooked. In this paper, it has been demonstrated
both analytically and confirmed with numerical simulations that
the filamentation of cosmic rays is an important process that can
occur in the precursors of supernova remnant shocks where diffusive
shock acceleration is taking place.

In addition, we have identified a mechanism for amplifying mag-
netic field on large length-scales as a result of the filamentation. The
process provides a natural mechanism to couple the rapid growth of
the magnetic field on small scales, as driven by the non-resonant in-
stability (Bell 2004), to length-scales comparable to, or larger than,
the gyroradius of the particles driving this instability, avoiding the
need for an inverse cascade. The growth time for this instability
can operate on time-scales as short as a few years, provided the
small-scale fields are amplified to a sufficient level. The reason for
the short growth time as compared with previous calculations of lin-
ear dispersion relations is that the instability develops in non-linear
small-scale magnetic fields with δB2/B2

0 � 1, unlike streaming
instabilities that typically consider the growth of weak Alfvénic
perturbations in the interstellar medium, where δB2/B2

0 � 1.
This has immediate implications for the maximum energy to

which cosmic rays can be accelerated at supernova remnant shock
fronts. The amplification of magnetic turbulence on all scales, sig-
nificantly beyond the limits of quasi-linear theory, remains the most
likely possibility for accelerating cosmic rays above the knee (e.g.
Bell & Lucek 2001; Kirk & Dendy 2001). Using MHD simulations
with a constant external cosmic ray current, Reville et al. (2008)
demonstrated that the non-resonant self-generated turbulence re-
duced the diffusion coefficient of test particles significantly below
the corresponding Bohm value in the pre-amplified field. However,
due to the limited dynamic range of these simulations, the diffu-
sion coefficient for particles with gyroradii larger than the typical

C© 2011 The Authors, MNRAS 419, 2433–2440
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2440 B. Reville and A. R. Bell

structures in the field converged to the small-angle scattering limit,
where the mean-free path grows rapidly with energy λMFP ∝ E2

(Reville et al. 2008; Zirakashvili & Ptuskin 2008). Thus, the gener-
ation of large-scale field structure is essential to achieve sub-Bohm
diffusion at E > 1015 eV. The filamentation instability can grow
extremely rapidly once the magnetic field perturbations have been
driven to non-linear levels, and may help to significantly reduce the
mean-free paths of these particles. Simulations in three dimensions,
with a significantly larger dynamic range, are required to confirm
this.

The topic of cosmic rays escaping the source has been reinvesti-
gated in recent years in light of developments in our understanding
of the magnetic field amplification (e.g. Caprioli, Amato & Blasi
2010; Ohira, Murase & Yamazaki 2010; Drury 2011). These models
typically assume a 1D or spherically symmetric model of cosmic
ray diffusion. Filamentation is almost certainly important in this
situation, since unlike the early 1D trapping models (e.g. Kulsrud &
Zweibel 1975; Kulsrud 1979), the expansion of low-density cavi-
ties and self-focused filaments can in fact assist in the escape. This
most likely occurs only far upstream, since closer to the shock, the
currents in the filaments are susceptible to beam-hose-type insta-
bilities. Again, a 3D analysis is required to investigate this further,
and will be addressed in future work.
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