181 research outputs found

    Inhibition of Tumor Growth Using Salmonella Expressing Fas Ligand

    Get PDF
    Intravenous administration of bacteria leads to their accumulation in tumors and to sporadic tumor regression. We therefore explored the hypothesis that Salmonella typhimurium engineered to express the proapoptotic cytokine Fas ligand (FasL) would exhibit enhanced antitumor activity. Immunocompetent mice carrying tumors derived from syngeneic murine D2F2 breast carcinoma or CT-26 colon carcinoma cells were treated intravenously with FasL-expressing S. typhimurium or with phosphate-buffered saline (PBS; control). Treatment with FasL-expressing S. typhimurium inhibited growth of primary tumors by an average of 59% for D2F2 tumors and 82% for CT-26 tumors (eg, at 25 days after initial treatment, mean volume of PBS-treated CT-26 colon carcinomas = 1385 mm3 and of S. typhimurium FasL-treated CT-26 tumors = 243 mm3, difference = 1142 mm3, 95% confidence interval = 800 mm3 to 1484 mm3, P < .001). Pulmonary D2F2 metastases (as measured by lung weight) were reduced by 34% in S. typhimurium FasL-treated mice compared with PBS-treated mice. FasL-expressing S. typhimurium had similar effects on growth of murine B16 melanoma tumors in wild-type mice but not in lpr/lpr mice, which lack Fas, or in mice with disrupted host inflammatory responses. Antitumor activity was achieved without overt toxicity. These preclinical results raise the possibility that using attenuated S. typhimurium to deliver FasL to tumors may be an effective and well-tolerated therapeutic strategy for some cancers

    Conversion of Membrane-bound Fas(CD95) Ligand to Its Soluble Form Is Associated with Downregulation of Its Proapoptotic Activity and Loss of Liver Toxicity

    Get PDF
    Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-α undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-α) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high

    Endothelin-receptor antagonists are proapoptotic and antiproliferative in human colon cancer cells

    Get PDF
    Endothelin (ET)-1 can act as an autocrine/paracrine growth factor or an antiapoptotic factor in human cancers. To study the role of ET-1 in human colon cancer, proliferation and apoptosis of colon carcinoma cells was investigated using human HT-29 and SW480 colon carcinoma cells. ET-1 was secreted by these cells. Treatment of cells with bosentan, a dual ET(A/B)-receptor antagonist, decreased cell number. Inhibition of DNA synthesis by bosentan was observed only in the presence of serum. Exogenously added ET-1 did not increase DNA synthesis in serum-deprived cells. SW480 cells were sensitive and HT-29 cells were resistant to FasL-induced apoptosis. Bosentan sensitised resistant HT-29 cells to FasL-induced, caspase-mediated apoptosis, but not to TNF-alpha-induced apoptosis. Bosentan and/or FasLigand (FasL) did not modulate the expression of caspase-8 or FLIP. Bosentan sensitisation to apoptosis was reversed by low concentrations (10(-13)-10(-10) M), but not by high concentrations (10(-9)-10(-7) M) of ET-1. These results suggest that the binding of ET-1 to high-affinity sites inhibits FasL-induced apoptosis, while the binding of either ET-1 or receptor antagonists to low-affinity sites promotes FasL-induced apoptosis. In conclusion, endothelin signalling pathways do not induce human colon cancer cell proliferation, but are survival signals controling resistance to apoptosis

    Mitochondrial Priming by CD28

    No full text
    T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation—cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses

    Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency

    Get PDF
    BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVE: We explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type vs. mutant LIG4 were performed in LIG4 knock-out Jurkat T cells and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naïve CD4+^{+} T cells and low TCR-Vα7.2+^{+} T cells, while T/B-cell receptor repertoires showed only mild alterations. Cohort screening identified two other non-related patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSION: We provide evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency

    A distinct CD38+CD45RA+ population of CD4+, CD8+, and double-negative T cells is controlled by FAS.

    Get PDF
    The identification and characterization of rare immune cell populations in humans can be facilitated by their growth advantage in the context of specific genetic diseases. Here, we use autoimmune lymphoproliferative syndrome to identify a population of FAS-controlled TCRαβ+ T cells. They include CD4+, CD8+, and double-negative T cells and can be defined by a CD38+CD45RA+T-BET- expression pattern. These unconventional T cells are present in healthy individuals, are generated before birth, are enriched in lymphoid tissue, and do not expand during acute viral infection. They are characterized by a unique molecular signature that is unambiguously different from other known T cell differentiation subsets and independent of CD4 or CD8 expression. Functionally, FAS-controlled T cells represent highly proliferative, noncytotoxic T cells with an IL-10 cytokine bias. Mechanistically, regulation of this physiological population is mediated by FAS and CTLA4 signaling, and its survival is enhanced by mTOR and STAT3 signals. Genetic alterations in these pathways result in expansion of FAS-controlled T cells, which can cause significant lymphoproliferative disease

    AKT activity orchestrates marginal zone B cell development in mice and humans.

    Get PDF
    The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D &lt;sup&gt;+&lt;/sup&gt; CD27 &lt;sup&gt;+&lt;/sup&gt; B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD &lt;sup&gt;+&lt;/sup&gt; CD27 &lt;sup&gt;-&lt;/sup&gt; and memory IgD &lt;sup&gt;-&lt;/sup&gt; CD27 &lt;sup&gt;+&lt;/sup&gt; B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans

    Hypophosphorylation of the architectural chromatin protein DEK in death-receptor-induced apoptosis revealed by the isotope coded protein label proteomic platform

    Full text link
    During apoptosis nuclear morphology changes dramatically due to alterations of chromatin architecture and cleavage of structural nuclear proteins. To characterize early events in apoptotic nuclear dismantling we have performed a proteomic study of apoptotic nuclei. To this end we have combined a cell-free apoptosis system with a proteomic platform based on the differential isotopic labeling of primary amines with N -nicotinoyloxy-succinimide. We exploited the ability of this system to produce nuclei arrested at different stages of apoptosis to analyze proteome alterations which occur prior to or at a low level of caspase activation. We show that the majority of proteins affected at the onset of apoptosis are involved in chromatin architecture and RNA metabolism. Among them is DEK, an architectural chromatin protein which is linked to autoimmune disorders. The proteomic analysis points to the occurrence of multiple PTMs in early apoptotic nuclei. This is confirmed by showing that the level of phosphorylation of DEK is decreased following apoptosis induction. These results suggest the unexpected existence of an early crosstalk between cytoplasm and nucleus during apoptosis. They further establish a previously unrecognized link between DEK and cell death, which will prove useful in the elucidation of the physiological function of this protein.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55852/1/5758_ftp.pd

    Prognostic impact of FAS/CD95/APO-1 in urothelial cancers: decreased expression of Fas is associated with disease progression

    Get PDF
    The death receptor Fas (Apo1/CD95) and Fas ligand (FasL) system is recognised as a major pathway for the induction of apoptosis in vivo, and antiapoptosis via its blockade plays a critical role in carcinogenesis and progression in several malignancies. However, the function of Fas–FasL system in urothelial cancer (UC) has not been elucidated. We therefore investigated the expression of Fas, FasL and Decoy receptor 3 for FasL (DcR3) in UC specimens and cell lines, and examined the cytotoxic effect of an anti-Fas-activating monoclonal antibody (mAb) in vitro. Immunohistochemical examinations of Fas-related molecules were performed on 123 UC and 30 normal urothelium surgical specimens. Normal urothelium showed Fas staining in the cell membrane and cytoplasm. In UC, less frequent Fas expression was significantly associated with a higher pathological grade (P<0.0001), a more advanced stage (P=0.023) and poorer prognosis (P=0.010). Fas and the absence thereof were suggested to be crucial factors with which to select patients requiring more aggressive treatment. Moreover, low-dose anti-Fas-activating mAb sensitised resistant cells to adriamycin, and this synergistic effect could be applied in the development of new treatment strategy for UC patients with multidrug-resistant tumours
    corecore