40 research outputs found
Hydration properties of soybean protein isolates
Hydration properties of soybean isolates with different processing conditions (heat treatments, pH and protein concentrations) were studied. Degree of denaturation, solubility in water, in 0.2mol/L NaCl, and in media of different sodium dodecyl sulfate concentrations, viscosity and water imbibing capacity of the different samples were determinated and correlated. Treatments at temperatures higher than 80°C denatured US and 7S proteins, leading to exposure of'Hydrophobie groups, which produced insoluble aggregates either in water or in high ionic strength media. These isolates possessed high water imbibing capacities and gave rise to viscous dispersions. Significant correlations were obtained between hydration properties and the "m" coefficient as calculated by a power law equation relating viscosity with the protein concentration of the dispersion. This "m" coefficient also correlated with the denaturation enthalpy of the protein isolates. On the basis of these results, it might be suggested that the "m" coefficient - dependent of the hydrodynamic behaviour of the particles - was a good estimator of the degree of protein denaturation.Facultad de Ciencias Exacta
Propriétés de rétention et de libération de micronutriments par des réseaux protéiques : Étude du système gélifié - [beta]lactoglobuline/fer
Ces travaux de recherche visent à comprendre le mécanisme de formation de gels protéiques en présence de fer en vue de les utiliser comme systèmes dans le développement de nouveaux aliments fonctionnels. Les résultats obtenus montrent qu'il est possible de former des gels à froid de -lactoglobuline en présence de fer. En fonction des conditions utilisées, deux types de gels ont été identifiés et caractérisés : d'une part, des gels filamenteux sont obtenus à faibles concentrations en fer et essentiellement maintenus par des interactions hydrophobes et d'autre part, des gels particulaires inhomogènes sont obtenus à fortes concentrations en fer et maintenus par des interactions de type van der Waals. Des études in vitro ont montré que les gels filamenteux permettaient de libérer le fer au niveau de la barrière intestinale et favorisaient son absorption. Ces gels constituent donc de très bons véhicules pour transporter le fer et optimiser sa biodisponibilité
Hydration properties of soybean protein isolates
Hydration properties of soybean isolates with different processing conditions (heat treatments, pH and protein concentrations) were studied. Degree of denaturation, solubility in water, in 0.2mol/L NaCl, and in media of different sodium dodecyl sulfate concentrations, viscosity and water imbibing capacity of the different samples were determinated and correlated. Treatments at temperatures higher than 80°C denatured US and 7S proteins, leading to exposure of'Hydrophobie groups, which produced insoluble aggregates either in water or in high ionic strength media. These isolates possessed high water imbibing capacities and gave rise to viscous dispersions. Significant correlations were obtained between hydration properties and the "m" coefficient as calculated by a power law equation relating viscosity with the protein concentration of the dispersion. This "m" coefficient also correlated with the denaturation enthalpy of the protein isolates. On the basis of these results, it might be suggested that the "m" coefficient - dependent of the hydrodynamic behaviour of the particles - was a good estimator of the degree of protein denaturation.Facultad de Ciencias Exacta
Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration
This work explores novel biocomposite hydrogels fabricated using 40% (wt/vol) solution of whey protein isolate (WPI, from the food industry) mixed with increasing concentrations of synthetic aragonite rod-like powder of 0, 100, 200 and 300 mg/ml (named WPI0, WPI100, WPI200 and WPI300). FTIR results showed that aragonite was successfully incorporated into the WPI hydrogel network. SEM and micro-CT investigations revealed that aragonite was mainly concentrated near the edges of the composite samples, except in WPI300, which had homogeneous aragonite distribution. The pore diameters ranged from 18 to 778 μm while averaged pore size was the lowest for WPI0 at 30 μm and highest for WPI200 at 103 μm. The mean compression modulus was highest for WPI300 at 3.16 MPa. After 28 days in physiological conditions WPI300 had maximum mean swelling of 4.3% and there was the highest degradation rate for WPI200 and WPI300 and lowest for WPI100 and WPI0. The osteoblast-like MG63 cell metabolic and alkaline phosphatase activities in direct contact experiments with composites increased with increasing aragonite content over 3 weeks. Moreover, the degradation products of these composites were non-cytotoxic and led to mineral-like deposits in extracellular matrix. These WPI-aragonite biocomposite hydrogels are potent candidates for bone repair applications
Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins
Ohmic heating (OH) encompasses interesting benefits towards thermal processing. Envisaging an increasing relevance of soybean protein as an alternative non-animal protein, it is important to understand how OH can contribute to the quality and immunoreactivity of soybean-derived products. This study describes, for the first time, the impact of OH when applied at different electrical frequencies (50 Hz20 kHz) and moderate electric field intensities (up to 20 V/cm), on the leakage of metals from the electrodes and immunoreactivity aspects of soybean protein isolate (SPI). This was achieved by monitoring the occurrence of electrochemical reactions and evaluating IgG-binding capacity. OH performed at 50 Hz and 95 °C induced significant alterations on the intrinsic fluorescence of SPI (p  0.05) and the release of detectable amounts of Fe/Ni, with a subsequent reduction of 36% in the immunoreactivity of Gly m TI. The occurrence of non-thermal effects, as well as the interaction between protein and trace metals, may result in a partial blockage of protein epitopes, thus impairing specific antibody binding. These findings present novel information about the importance of OH parameters, such as electrical frequency and occurrence of electrochemical reactions, which can affect the structure and immunoreactivity of SPI fractions.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 and UID/QUI/50006/2020 with funding from FCT/MCTES
through national funds, and AgriFood XXI R&D&I project, operation number NORTE-01-0145-FEDER-000041 and NORTE-01-0145-FEDER 000052, co-financed by the European Regional Development Fund
(FEDER) through NORTE 2020 (Northern Regional Operational Pro gram 2014/2020). This work also received financial support from the European Union (FEDER funds through COMPETE POCI-01-0145-
FEDER-031720) and National Funds (FCT) through project Alle Risk Assess PTDC/BAA-AGR/31720/2017. Caterina Villa and LuÃs Machado thank FCT for their grants under project AlleRiskAssess
(PTDC/BAA-AGR/31720/2017). Joana Costa thanks FCT for funding through program DL 57/2016 – Norma transitoria (SFRH/BPD/102404/2014). Ricardo N. Pereira acknowledge FCT for its Assistant Research
contract obtained under CEEC Individual 2017.info:eu-repo/semantics/publishedVersio
Protein-based structures for food applications: from macro to nanoscale
Novel food structures' development through handling of macroscopic and microscopic properties of bio-based materials (e.g., size, shape, and texture) is receiving a lot of attention since it allows controlling or changing structures' functionality. Proteins are among the most abundant and employed biomaterials in food technology. They are excellent candidates for creating novel food structures due to their nutritional value, biodegradability, biocompatibility, generally recognized as safe (GRAS) status and molecular characteristics. Additionally, the exploitation of proteins' gelation and aggregation properties can be used to encapsulate bioactive compounds inside their network and produce consistent delivery systems at macro-, micro-, and nanoscale. Consequently, bioactive compounds which are exposed to harsh storage and processing conditions and digestion environment may be protected and their bioavailability could be enhanced. In this review, a range of functional and structural properties of proteins which can be explored to develop macro-, micro-, and nanostructures with numerous promising food applications was discussed. Also, this review points out the relevance of scale on these structures' properties, allowing appropriate tailoring of protein-based systems such as hydrogels and micro- or nanocapsules to be used as bioactive compounds delivery systems. Finally, the behavior of these systems in the gastrointestinal tract (GIT) and the impact on bioactive compound bioavailability are thoroughly discussed.JM and AP acknowledge the Portuguese Foundation for Science and Technology (FCT) for their fellowships
(SFRH/BPD/89992/2012 and SFRH/BPD/101181/2014). This work was supported by Portuguese FCT under the scope of the Project PTDC/AGR-TEC/5215/2014, of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio
Tryptophan-Mediated Denaturation of β-Lactoglobulin A by UV Irradiation
peer-reviewedβ-Lactoglobulin A, a genetic variant of one of the main whey proteins, was irradiated at 295 nm for 24 h. After irradiation, 18% of the protein was denatured (determined by reverse-phase chromatography). The fluorescence spectrum of the irradiated protein was red-shifted compared to that of the native protein, indicating a change in protein folding. Sulfhydryl groups, which are buried in native β-lactoglobulin, were exposed following irradiation and became available for quantification using the Ellman assay. The quantity of exposed sulfhydryls increased, but the number of total sulfhydryl groups decreased. Gel permeation chromatography showed that some protein aggregation occurred during irradiation. Fourier transform infrared (FTIR) spectroscopy of irradiated β-lactoglobulin revealed changes in the secondary structure, comparable to that of early events during heat-induced denaturation. There was evidence for some photo-oxidation of tryptophan
Whey protein-derived biomaterials and their use as bioencapsulation and delivery systems
The emergence of bioactive food compounds (nutraceutical compounds) with health benefits provides an excellent opportunity for improving public health. The incorporation of bioactive compounds into food systems is therefore of great interest to researchers in their efforts to develop innovative functional foods that may have physiological benefits or reduce the risk of disease beyond basic nutritional functions. However, the effectiveness of these products in preventing diseases relies on preserving the bioavailability of their active ingredients. This represents undoubtedly a great challenge since these molecules are generally sensitive to environmental conditions encountered in food processes (i.e., temperature oxygen, and light) or in the gastrointestinal tract (i.e., pH, enzymes presence of other nutrients), which limit their activity and potential health benefits. However, bio- and microencapsulation can be used to overcome these limitations. Whey proteins, also known as the serum proteins of milk, are widely used in food products, because of their high nutritional value and their ability to form gels, emulsions, or foams. The aim of this article is to provide information on the different types of materials obtained from whey proteins and to examine their use as bioencapsulation and delivery systems