54 research outputs found
South Korea's automotive labour regime, Hyundai Motorsâ global production network and tradeâbased integration with the European Union
This article explores the interrelationship between global production networks(GPNs) and free trade agreements (FTAs) in the South Korean auto industry and its employment relations. It focuses on the production network of the Hyundai Motor Group (HMG) â the third biggest automobile manufacturer in the world â and the FTA between the EU and South Korea. This was the first of the EUâs ânew generationâ FTAs, which among other things contained provisions designed to protect and promote labour standards. The articleâs argument is twofold. First, that HMGâs production network and Koreaâs political economy (of which HMG is a crucial part) limited the possibilities for the FTAâs labour provisions to take effect. Second, that the commercial provisions in this same FTA simultaneously eroded HMGâs domestic market and corporate profitability, leading to adverse consequences for auto workers in the more
insecure and low-paid jobs. In making this argument, the article advances a multiscalar conceptualization of the labour regime as an analytical intermediary between GPNs and FTAs. It also provides one of the first empirical studies of the EUâSouth Korea FTA in terms of employment relations, drawing on 105 interviews with trade unions, employer associations, automobile companies and state officials across both parties
The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earthâs surface to âŒ100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian âhotspotsâ of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to âŒ100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes
Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
PFS (Prime Focus Spectrograph), a next generation facility instrument on the
8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed,
optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394
reconfigurable fibers will be distributed over the 1.3 deg field of view. The
spectrograph has been designed with 3 arms of blue, red, and near-infrared
cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure
at a resolution of ~1.6-2.7A. An international collaboration is developing this
instrument under the initiative of Kavli IPMU. The project is now going into
the construction phase aiming at undertaking system integration in 2017-2018
and subsequently carrying out engineering operations in 2018-2019. This article
gives an overview of the instrument, current project status and future paths
forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and
Instrumentation 201
Implicating Calpain in Tau-Mediated Toxicity In Vivo
Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo
Chronic kidney disease and arrhythmias: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Patients with chronic kidney disease (CKD) are predisposed to heart rhythm disorders, including atrial fibrillation (AF)/atrial flutter, supraventricular tachycardias, ventricular arrhythmias, and sudden cardiac death (SCD). While treatment options, including drug, device, and procedural therapies, are available, their use in the setting of CKD is complex and limited. Patients with CKD and end-stage kidney disease (ESKD) have historically been under-represented or excluded from randomized trials of arrhythmia treatment strategies,1 although this situation is changing.2 Cardiovascular society consensus documents have recently identified evidence gaps for treating patients with CKD and heart rhythm disorders [...
The social dimension of globalization: A review of the literature
With globalization affecting so many inter-connected areas, it is difficult to grasp its full impact. This literature review of over 120 sources considers the impact of globalization on wages and taxes, poverty, inequality, insecurity, child labour, gender, and migration. Opening with some stylized facts concerning globalization in 1985-2002, the authors then highlight recent findings on these areas, reporting on controversies and on emerging consensus where it exists. There follows a review of national and international policy responses designed to make globalization more sustainable and equitable and to deliver decent jobs, security and a voice in decision-making
Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope
We present ultraviolet (UV) spectroscopy and photometry of four Type Ia
supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism
of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset
provides unique spectral time series down to 2000 Angstrom. Significant
diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for
this small sample. The corresponding photometric data, together with archival
data from Swift Ultraviolet/Optical Telescope observations, provide further
evidence of increased dispersion in the UV emission with respect to the
optical. The peak luminosities measured in uvw1/F250W are found to correlate
with the B-band light-curve shape parameter dm15(B), but with much larger
scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag
versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an
outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia
such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W
filters, respectively. We show that different progenitor metallicity or
line-expansion velocities alone cannot explain such a large discrepancy.
Viewing-angle effects, such as due to an asymmetric explosion, may have a
significant influence on the flux emitted in the UV region. Detailed modeling
is needed to disentangle and quantify the above effects.Comment: 17 pages, 13 figures, accepted by Ap
Planck intermediate results XVI. Profile likelihoods for cosmological parameters
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the CDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit \u3c3mv 640:26 eV (95% confidence) from the CMB+lensing+BAO data combination. \ua9 ESO 2014
ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders
Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders
- âŠ