46 research outputs found

    Resolving Target Ambiguity in 3D Gaze Interaction through VOR Depth Estimation

    Get PDF
    Target disambiguation is a common problem in gaze interfaces, as eye tracking has accuracy and precision limitations. In 3D environments this is compounded by objects overlapping in the field of view, as a result of their positioning at different depth with partial occlusion. We introduce \textit{VOR depth estimation}, a method based on the vestibulo-ocular reflex of the eyes in compensation of head movement, and explore its application to resolve target ambiguity. The method estimates gaze depth by comparing the rotations of the eye and the head when the users look at a target and deliberately rotate their head. We show that VOR eye movement presents an alternative to vergence for gaze depth estimation, that is feasible also with monocular tracking. In an evaluation of its use for target disambiguation, our method outperforms vergence for targets presented at greater depth

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    RNA Nucleocytoplasmic Transport Defects in Neurodegenerative Diseases

    No full text
    In eukaryotic cells, transcription and translation are compartmentalized by the nuclear membrane, requiring an active transport of RNA from the nucleus into the cytoplasm. This is accomplished by a variety of transport complexes that contain either a member of the exportin family of proteins and translocation fueled by GTP hydrolysis or in the case of mRNA by complexes containing the export protein NXF1. Recent evidence indicates that RNA transport is altered in a number of different neurodegenerative diseases including Huntington\u27s disease, Alzheimer\u27s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Alterations in RNA transport predominately fall into three categories: Alterations in the nuclear membrane and mislocalization and aggregation of the nucleoporins that make up the nuclear pore; alterations in the Ran gradient and the proteins that control it which impacts exportin based nuclear export; and alterations of proteins that are required for the export of mRNA leading nuclear accumulation of mRNA
    corecore