9 research outputs found

    Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity

    Get PDF
    The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endo-nucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a proto-spacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.Publisher PDFPeer reviewe

    Structural studies of CRISPR-associated proteins

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPRs) act to prevent viral infection and horizontal gene transfer in prokaryotes. The genomic CRISPR array contains short sequences (ā€œspacersā€) that are derived from foreign genetic elements. The CRISPR array is transcribed and processed into CRISPR RNAs (crRNAs) used in the sequence-specific degradation of foreign nucleic acids. This process is called interference and is mediated by CRISPR-associated (Cas) proteins. This thesis has focused on the structural and functional characterisation of four Cas proteins from the CRISPR/Cas system of Sulfolobus solfataricus. The crystal structure of Cmr7 (Sso1725), a Sulfolobales-specific subunit of the ssRNA-degrading CMR complex, allowed for the identification of a putative protein-binding site, though no specific function could be ascribed to the protein. Cas6 (Sso1437) is the enzyme responsible for crRNA maturation and the characterisation of this protein allowed for the molecular rationalisation of its atypical RNA cleavage mechanism. Csa5 and Cas8a2 are subunits of the aCascade complex that targets dsDNA. Csa5 (Sso1398) was shown to have a putative role in R-loop stabilisation during interference while the role of Cas8a2 (Sso1401) was not determined. The structures of these two proteins were used to define relationships between the subunits of interference complexes from various CRISPR/Cas systems. A second aspect of this work has been the expression and purification of eukaryotic ion channels for structural studies. The acid sensing ion channel (ASIC) and FMRFamide-gated sodium channel (FaNaC) are gated ion channels with unknown mechanisms of channel activation. These ion channels must be expressed in eukaryotic systems and so human embryonic kidney (HEK) cells and baculovirus-insect cell expression systems were developed to express ASIC and FaNaC constructs. The expression and purification protocols have been optimised to allow for the preparation of soluble protein that will in future be used for crystallography and electron paramagnetic resonance (EPR) studies

    Structure of the archaeal Cascade subunit Csa5 : Relating the small subunits of CRISPR effector complexes

    Get PDF
    This work was funded by a grant from the Biotechnology and Biological Sciences Research Council (BBSRC) (REF: BB/G011400/1) to M.F.W. and J.H.N. and a BBSRC-funded studentship to J.R.The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved Ī±-helical domain with a small insertion consisting of a weakly conserved Ī²-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same Ī±-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.Publisher PDFPeer reviewe

    CRISPR interference : a structural perspective

    Get PDF
    This article was made open access through BIS OA funding. The laboratory is funded by grants from the Biotechnology and Biological Sciences Research Council (BBSRC).CRISPR (cluster of regularly interspaced palindromic repeats) is a prokaryotic adaptive defence system, providing immunity against mobile genetic elements such as viruses. Genomically encoded crRNA (CRISPR RNA) is used by Cas (CRISPR-associated) proteins to target and subsequently degrade nucleic acids of invading entities in a sequence-dependent manner. The process is known as ā€˜interferenceā€™. In the present review we cover recent progress on the structural biology of the CRISPR/Cas system, focusing on the Cas proteins and complexes that catalyse crRNA biogenesis and interference. Structural studies have helped in the elucidation of key mechanisms, including the recognition and cleavage of crRNA by the Cas6 and Cas5 proteins, where remarkable diversity at the level of both substrate recognition and catalysis has become apparent. The RNA-binding RAMP (repeat-associated mysterious protein) domain is present in the Cas5, Cas6, Cas7 and Cmr3 protein families and RAMP-like domains are found in Cas2 and Cas10. Structural analysis has also revealed an evolutionary link between the small subunits of the type I and type III-B interference complexes. Future studies of the interference complexes and their constituent components will transform our understanding of the system.Publisher PDFPeer reviewe

    Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing

    Get PDF
    This work was funded by the Biotechnology and Biological Sciences Research Council [grant numbers BB/G011400/1 and BB/K000314/1 (to M.F.W. and J.H.N.)], a Biotechnology and Biological Sciences Research Council-funded studentship to J.R. and a Medical Research Council-funded studentship to R.D.S.The competition between viruses and hosts is played out in all branches of life. Many prokaryotes have an adaptive immune system termed 'CRISPR' (clustered regularly interspaced short palindromic repeats) which is based on the capture of short pieces of viral DNA. The captured DNA is integrated into the genomic DNA of the organism flanked by direct repeats, transcribed and processed to generate crRNA (CRISPR RNA) that is loaded into a variety of effector complexes. These complexes carry out sequence-specific detection and destruction of invading mobile genetic elements. In the present paper, we report the structure and activity of a Cas6 (CRISPR-associated 6) enzyme (Sso1437) from Sulfolobus solfataricus responsible for the generation of unit-length crRNA species. The crystal structure reveals an unusual dimeric organization that is important for the enzyme's activity. In addition, the active site lacks the canonical catalytic histidine residue that has been viewed as an essential feature of the Cas6 family. Although several residues contribute towards catalysis, none is absolutely essential. Coupled with the very low catalytic rate constants of the Cas6 family and the plasticity of the active site, this suggests that the crRNA recognition and chaperone-like activities of the Cas6 family should be considered as equal to or even more important than their role as traditional enzymes.Publisher PDFPeer reviewe

    Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity

    Get PDF
    The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse ā€œpayloadā€ of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endonucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5ā€² sequence in the crRNA, but not on the presence of a protospacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets

    Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design

    Get PDF
    Protein flexibility poses a major challenge in binding site identification. Several computational pocket detection methods that utilize small-molecule probes in molecular dynamics (MD) simulations have been developed to address this issue. Although they have proven hugely successful at reproducing experimental structural data, their ability to predict new binding sites that are yet to be identified and characterized has not been demonstrated. Here, we report the use of benzenes as probe molecules in ligand-mapping MD (LMMD) simulations to predict the existence of two novel binding sites on the surface of the oncoprotein MDM2. One of them was serendipitously confirmed by biophysical assays and X-ray crystallography to be important for the binding of a new family of hydrocarbon stapled peptides that were specifically designed to target the other putative site. These results highlight the predictive power of LMMD and suggest that predictions derived from LMMD simulations can serve as a reliable basis for the identification of novel ligand binding sites in structure-based drug design
    corecore