1,796 research outputs found

    Contribution of murine IgG Fc regions to antibody binding to the capsule of Burkholderia pseudomallei.

    Get PDF
    Immunoglobulin G3 (IgG3) is the predominant IgG subclass elicited in response to polysaccharide antigens in mice. This specific subclass has been shown to crosslink its fragment crystallizable (Fc) regions following binding to multivalent polysaccharides. Crosslinking leads to increased affinity through avidity, which theoretically should lead to more effective protection against bacteria and yeast displaying capsular polysaccharides on their surface. To investigate this further we have analyzed the binding characteristics of 2 IgG monoclonal antibody (mAb) subclass families that bind to the capsular polysaccharide (CPS) of Burkholderia pseudomallei. The first subclass family originated from an IgG3 hybridoma cell line (3C5); the second family was generated from an IgG1 cell line (2A5). When the Fc region of the 3C5 IgG3 is removed by proteolytic cleavage, the resulting F(ab')2 fragments exhibit decreased affinity compared to the full-length mAb. Similarly, when the parent IgG3 mAb is subclass-switched to IgG1, IgG2b, and IgG2a, all of these subclasses exhibit decreased affinity. This decrease in affinity is not seen when the 2A5 IgG1 mAb is switched to an IgG2b or IgG2a, strongly suggesting the drop in affinity is related to the IgG3 Fc region

    Changes in undergraduate student alcohol consumption as they progress through university

    Get PDF
    BACKGROUND: Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course. METHOD: Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1 n = 2843; Year 2 n = 2219; Year 3 n = 1805). Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative impact during Year 3 when compared to Year 1. CONCLUSION: The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population of students suggests the need for effective preventative and treatment interventions for all year groups

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Differential physiological changes following internet exposure in higher and lower problematic internet users

    Get PDF
    Problematic internet use (PIU) has been suggested as in need of further research with a view to being included as a disorder in future Diagnostic and Statistical Manual (DSM) of the American Psychiatric Association, but lack of knowledge about the impact of internet cessation on physiological function remains a major gap in knowledge and a barrier to PIU classification. One hundred and forty-four participants were assessed for physiological (blood pressure and heart rate) and psychological (mood and state anxiety) function before and after an internet session. Individuals also completed a psychometric examination relating to their usage of the internet, as well as their levels of depression and trait anxiety. Individuals who identified themselves as having PIU displayed increases in heart rate and systolic blood pressure, as well as reduced mood and increased state of anxiety, following cessation of internet session. There were no such changes in individuals with no self-reported PIU. These changes were independent of levels of depression and trait anxiety. These changes after cessation of internet use are similar to those seen in individuals who have ceased using sedative or opiate drugs, and suggest PIU deserves further investigation and serious consideration as a disorder

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    Incidence and trends of blastomycosis-associated hospitalizations in the United States

    Get PDF
    We used the State Inpatient Databases from the United States Agency for Healthcare Research and Quality to provide state-specific age-adjusted blastomycosis-associated hospitalization incidence throughout the entire United States. Among the 46 states studied, states within the Mississippi and Ohio River valleys had the highest age-adjusted hospitalization incidence. Specifically, Wisconsin had the highest age-adjusted hospitalization incidence (2.9 hospitalizations per 100,000 person-years). Trends were studied in the five highest hospitalization incidence states. From 2000 to 2011, blastomycosis-associated hospitalizations increased significantly in Illinois and Kentucky with an average annual increase of 4.4% and 8.4%, respectively. Trends varied significantly by state. Overall, 64% of blastomycosis-associated hospitalizations were among men and the median age at hospitalization was 53 years. This analysis provides a complete epidemiologic description of blastomycosis-associated hospitalizations throughout the endemic area in the United States

    Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations

    Get PDF
    ​Leucine-rich repeat kinase 2 (​LRRK2) mutations are the most common genetic cause of Parkinson’s disease. ​LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson’s disease, but whether ​LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that ​LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase ​αTAT1 prevents association of mutant ​LRRK2 with microtubules, and the deacetylase inhibitor ​trichostatin A (​TSA) restores axonal transport. In vivo knockdown of the deacetylases ​HDAC6 and ​Sirt2, or administration of ​TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson’s disease

    Bacteraemia among severely malnourished children infected and uninfected with the human immunodeficiency virus-1 in Kampala, Uganda

    Get PDF
    BACKGROUND: To establish the magnitude of bacteraemia in severely malnourished children, and describe the types of bacteria and antimicrobial sensitivity by HIV status. METHOD: Isolates were recovered from 76 blood specimens. Antibiotic susceptibility tests were performed using commercial antibiotic disks and demographic and clinical findings were recorded. RESULTS: Of the 450 children 63% were male; median age 17.0 months (inter quartile range, IQR 12–24) and 57% had oedema. 151 (36.7 %) of 411 tested HIV-positive; 76 (17.1%) of 445 blood specimens grew bacterial isolates; 58% were Gram negative – S. typhimurium (27.6%) and S. enteriditis (11.8%). Staph. aureus (26.3%) and Strep. pneumoniae (13.2%) were the main Gram positive organisms. There was no difference in the risk of bacteraemia by HIV status, age < 24 months, male sex, or oedema, except for oral thrush (OR 2.3 CI 1.0–5.1) and hypoalbuminaemia (OR 3.5 CI 1.0–12.1). Isolates from severely immuno-suppressed children (CD4% <15%) were more likely to grow Salmonella enteriditis (OR 5.4; CI 1.6 – 17.4). The isolates were susceptible (≥ 80%) to ciprofloxacin, ceftriaxone and gentamicin; with low susceptibility to chlorampenicol, ampicillin (< 50%) and co-trimoxazole (<25%). Suspicion of bacteraemia had 95.9% sensitivity and 99.2% specificity. Among bacteraemic children, mortality was higher (43.5% vs 20.5%) in the HIV-positive; OR 3.0 (95%CI 1.0, 8.6). CONCLUSION: Bacteraemia affects 1 in every 6 severely malnourished children and carries high mortality especially among the HIV-positive. Given the high level of resistance to common antibiotics, there is need for clinical trials to determine the best combinations of antibiotics for management of bacteraemia in severely malnourished children

    A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal

    Get PDF
    The classification of neuroendocrine neoplasms (NENs) differs between organ systems and currently causes considerable confusion. A uniform classification framework for NENs at any anatomical location may reduce inconsistencies and contradictions among the various systems currently in use. The classification suggested here is intended to allow pathologists and clinicians to manage their patients with NENs consistently, while acknowledging organ-specific differences in classification criteria, tumor biology, and prognostic factors. The classification suggested is based on a consensus conference held at the International Agency for Research on Cancer (IARC) in November 2017 and subsequent discussion with additional experts. The key feature of the new classification is a distinction between differentiated neuroendocrine tumors (NETs), also designated carcinoid tumors in some systems, and poorly differentiated NECs, as they both share common expression of neuroendocrine markers. This dichotomous morphological subdivision into NETs and NECs is supported by genetic evidence at specific anatomic sites as well as clinical, epidemiologic, histologic, and prognostic differences. In many organ systems, NETs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, and/or the presence of necrosis; NECs are considered high grade by definition. We believe this conceptual approach can form the basis for the next generation of NEN classifications and will allow more consistent taxonomy to understand how neoplasms from different organ systems inter-relate clinically and genetically
    corecore