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RESEARCH ARTICLE Open Access

The Cyprinodon variegatus genome reveals
gene expression changes underlying
differences in skull morphology among
closely related species
Ezra S. Lencer1* , Wesley C. Warren2, Richard Harrison1ˆ and Amy R. McCune1

Abstract

Background: Understanding the genetic and developmental origins of phenotypic novelty is central to the study
of biological diversity. In this study we identify modifications to the expression of genes at four developmental
stages that may underlie jaw morphological differences among three closely related species of pupfish (genus
Cyprinodon) from San Salvador Island, Bahamas. Pupfishes on San Salvador Island are trophically differentiated and
include two endemic species that have evolved jaw morphologies unlike that of any other species in the genus
Cyprinodon.

Results: We find that gene expression differs significantly across recently diverged species of pupfish. Genes such
as Bmp4 and calmodulin, previously implicated in jaw diversification in African cichlid fishes and Galapagos finches,
were not found to be differentially expressed among species of pupfish. Instead we find multiple growth factors and
cytokine/chemokine genes to be differentially expressed among these pupfish taxa. These include both genes and
pathways known to affect craniofacial development, such as Wnt signaling, as well as novel genes and pathways not
previously implicated in craniofacial development. These data highlight both shared and potentially unique sources of
jaw diversity in pupfish and those identified in other evolutionary model systems such as Galapagos finches and
African cichlids.

Conclusions: We identify modifications to the expression of genes involved in Wnt signaling, Igf signaling, and the
inflammation response as promising avenues for future research. Our project provides insight into the magnitude of
gene expression changes contributing to the evolution of morphological novelties, such as jaw structure, in recently
diverged pupfish species.

Keywords: Craniofacial, Transcriptomics, Development, Genome, Skull, Pupfish, Evolution

Background
A central goal of evolutionary biology is to understand
the origins of phenotypic diversity. Critical to this task is
elucidating how new phenotypic variation is produced
during the early stages of species diversification. It is
now widely appreciated that modified gene expression
often underlies the origins of new variation at both deep
and shallow phylogenetic scales [1–5]. Studies have

largely focused on identifying how the expression of
conserved genes are modified in different taxa. However,
until recently, a challenge has been to identify additional
sets of genes that may contribute to variation in pheno-
types of interest. This is especially important for
complex traits where phenotypic variation available to
selection may be produced through interactions of
multiple genes as well as environmental factors.
Skull morphology is an ecologically critical complex

trait that varies widely across vertebrate taxa, and fishes
offer a great diversity of skull and jaw morphology that
are both functionally important and relatively accessible
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to study [6–10]. Model organisms such as zebrafish or me-
daka lack the phenotypic diversity of interest, but non-
model organisms like cichlid fishes or pupfishes display this
diversity and are also easy to rear in the lab [9, 11–13].
From a developmental perspective, specification and differ-
entiation of skeletal head elements depends on complex
interactions between the brain, facial epithelium, neural
crest derived mesenchyme, and head endoderm during em-
bryonic development [14–17]. Given the complexity of
skull development, it is often thought that the enormous di-
versity of vertebrate skull forms could be produced through
tweaking a conserved skull developmental program in
different ways [10, 11, 18, 19]. Our understanding of how
skull morphological diversity is produced in wild taxa is still
largely limited to work on Galapagos finches and African
cichlids. Amazingly, early work in both finches and cichlids
showed that differences in jaw morphology is associated
with altered expression of the same genes, Bmp4 and cal-
modulin [11, 20–22]. However, sources of jaw phenotypic
variation can be unique. Ongoing work in Caribbean bull-
finches, close relatives of Galapagos finches, indicated that
modification to the expression of different genes underlie
jaw diversity among these taxa [19]. Other mechanisms, in-
cluding roles for hedgehog signaling and Wnt signaling,
have been proposed in different taxa [16, 23–29]. Thus a
major next step is to both understand how and in what
ways the genetic sources of phenotypic diversity in skull
form vary across clades, as well as to identify additional
genes and potential regulatory interactions that link gene
expression to alterations in cell behavior that ultimately
produce morphological variation.
Here, we use RNA-seq to identify a set of genes that

may contribute to striking differences in jaw morphology
among three ecologically differentiated pupfish species
(genus Cyprinodon) from San Salvador Island Bahamas
(Fig. 1). One of these island species is a population of
the widespread C. variegatus, believed to have the plei-
siomorphic jaw morphology for the group, while the
other two species are endemic to San Salvador Island
and exhibit unique jaw morphologies among the ~50
species of Cyprinodon [12, 13, 30, 31].
Our previous research indicates that species differ in the

relative growth rates of individual bones of the skull
during larval and juvenile growth [13]. Modifications to
growth rates have long been proposed as a mechanism by
which morphological diversity may be produced [32, 33],
however, there is little known about how growth is modi-
fied at a molecular level, especially among wild taxa.
In pupfishes, altered growth of jaw bones might be

due to altered gene expression during embryonic
development as occurs in cichlids and finches, or it
could be due largely to altered morphogenetic growth
processes during post-hatching development. To in-
vestigate, we characterize gene expression among

species at four developmental stages corresponding to
major periods of skull differentiation and growth dur-
ing both embryonic and post-hatching life stages. We
sequenced and assembled the genome of the pupfish,
C. variegatus, to serve as our reference in these
studies. Our data identify a number of transcription
factors, growth factors, and bone cell stimulatory
molecules differentially expressed at embryonic and
larval periods that may be related to differences in
skull morphology among species of San Salvador pup-
fishes. Here we report on the Cyprinodon genome
and the results from the RNA-seq study, revealing
potential sources of skull morphological variation in
pupfishes.

Methods
Study system
San Salvador pupfish species differ dramatically in cranial
morphology and trophic ecology [12, 13]. One species,
considered a population of the widespread C. variegatus,
is an omnivore that exhibits the likely ancestral morph-
ology [12, 34, 35]. The two other species on the island are
endemic and exhibit unique jaw morphologies relative to
all other Cyprinodon [13, 30, 36]. A scale-biter, C. desqua-
mator, uses its enlarged upturned jaws to feed on the
scales and body slime of other pupfishes (Fig. 1). The dur-
ophage, C. brontotheroides, feeds on hard-shelled prey
such as snails, and has small robust jaws that are nested
underneath maxilla and nasal bone extensions (Fig. 1). All
three species occur in sympatry in a number of inland
saltwater lakes on San Salvador Island. These inland lakes
are not connected with the ocean. A population of C.
variegatus also occurs in a mangrove estuary on the
southern end of the island, and this hardy species is wide-
spread on the North Atlantic coast from Massachusetts to
Florida [37, 38]. Previous phylogenetic studies have sug-
gested the mangrove estuarine population of C. variegatus
and the inland lacustrine populations are genetically distinct
despite their morphological similarity and taxonomic iden-
tity [31, 39]. For simplicity, in this paper, we will use infor-
mal names for these taxa descriptive by trophic ecology
and/or habitat. We thus refer to C. desquamator as the
scale-biter and C. brontotheroides as the durophage. Sym-
patric with these two species are the inland C. variegatus or
the “inland omnivore.” The marine estuarine population of
C. variegatus is simply the “marine omnivore.”
Morphological differences among species of pupfishes

arise from differential growth rates of individual bones
[13]. Oral jaw bones in the scale-biter grow at signifi-
cantly faster rates during post-hatching growth than ei-
ther of the other two species. In contrast, oral jaw bones
of the durophage increase in size at significantly slower
rates than either of the other two species during this
same period. Changes to the relative growth rates of
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these individual jaw bones affect not only the adult size
and shape of the bones, but also the overall skull shape,
through the relative placement and interconnections of
individual bones. For example the relatively small robust
jaws of the durophage means that the jaws are posi-
tioned underneath the maxilla and nasal bones, giving
the skull a very different appearance than in other spe-
cies (Fig. 1). Measurable morphological differences
emerge through juvenile growth, and by 17 days post
fertilization (dpf ), juvenile fish of each species have
measurable differences in relative jaw size. However,
these differences in growth rates during post-hatching
stages could arise from either embryonic specification of
jaw structures prior to hatching or from modifications
solely to post-hatching growth.

Genome sequencing and annotation
We sequenced and annotated the genome of C. variega-
tus. DNA used for sequencing the C. variegatus genome
was obtained from a tissue sample of a single female
identified as N-32, collected in 2010 at Navarre, FL,
USA and provided to us by Diane Nacci at the EPA. Se-
quences of 100 bp length were generated on an Illumina
HiSeq2500 instrument. Sequences were assembled ac-
cording to default parameter recommendations provided
in the AllPaths-LG assembler [40]. This model requires
~40× sequence coverage from each of overlapping
(200 bp fragment size) and 3 kb Illumina paired-end
(PE) reads and 10× of 8 kb PE Illumina reads. In the
C_variegatus-1.0 assembly (NCBI) we removed contam-
inating contigs, trimmed vector sequence in the form of

Fig. 1 Morphology and sampling locations of San Salvador Island pupfishes. a Map of San Salvador Island indicating sites where wild parental
fish used in the experiment were sourced. Wild fish of two endemic species, C. brontotheroides and C. desquamator, were collected from Crescent
Pond at the north end of the island (inset). Two distinct populations of a third species, C. variegatus, were sourced from both Crescent Pond and
a marine lagoon at the south end of the island. b Representative images illustrate the phenotypes of these 3 wild caught species. Shown are
adult male fish in lateral view and the accompanying images of the skulls of these same fish stained with alizarin to visualize bone (red). Camera
lucida drawings of cleared and stained fish highlight species differences in jaw morphology. Note the elongation of the jaws in the scale-biter, C.
desquamator, the robust short jaws of the durophage, C. brontotheroides, and the similar jaw morphology of the inland and marine forms of the
omnivore, C. variegatus. Scale bars = 1 mm unless noted. Map of San Salvador is based on [96]

Lencer et al. BMC Genomics  (2017) 18:424 Page 3 of 33



X’s, and ambiguous bases in the form of N’s in the se-
quence data. All scaffolds (singletons) and contigs within
scaffolds that were 200 bp and less in length were
removed from the assembly.
Gene annotation of the C. variegatus reference genome

(C._variegatus-1.0) was completed according to previously
established NCBI procedures (https://www.ncbi.nlm.nih.-
gov/genome/annotation_euk/process/).

Animal husbandry and breeding for RNA-seq study
Wild caught Cyprinodon pupfishes from San Salvador Is-
land, Bahamas, were maintained at Cornell University in
5 parts per thousand (ppt) brackish water at a constant
temperature of 27 °C and a 14 h light/10 h dark sche-
dule. Male-female pairs of wild caught fish were allowed
to breed undisturbed for 1 h, after which clutches of
eggs were collected and reared in petri-dishes with daily
water changes. Larvae were transferred to 3 gal zebrafish
rack tanks after hatching, which typically occurred be-
tween 7 to 8 days post fertilization (dpf ). Hatched fish
were fed daily live brine shrimp ad libitum beginning on
8 dpf, and water was changed every other day. All wild
collections, animal husbandry, and procedures were ap-
proved by Cornell IACUC, protocol number 2011–0045
to ESL and ARM. Field research was conducted under
Bahamas Environment, Science & Technology permit is-
sued on November 10, 2012 and Export Permit 23/2013
issued on February 4, 2013.

Sampling and dissections for RNA-seq
Full-sib clutches were sampled at 48 h post fertilization
(hpf ) corresponding to medaka embryonic stage 26–27
(Cyprinodon stage 26 from Lencer in prep.; head devel-
opment similar to approx. Early Pharyngula Period of
zebrafish) [41], 96 hpf corresponding to medaka embry-
onic stage 34–35 (Cyprinodon stage 30 from Lencer in
prep.; head development similar to approx. Early Hatch-
ing Period of zebrafish) [41], 8 dpf (hatching larvae), and
15 dpf (juvenile fish). The stages sampled here cover a
wide span of developmental time during which cell types
and organs are differentiating. To account for this and
to make samples as comparable across stages as possible
we performed slightly different dissections at each stage.
For example, we excluded eye and brain tissue from
latter stages in order to remove these transcriptionally
active organs. Dissections were performed similarly for
all species, and we focus our comparisons among differ-
ent taxa sampled at the same stage (see below). Fish
were euthanized with an overdose of MS-222. For em-
bryonic stages, head tissue was dissected away from the
body and placed in RNAlater (Thermo Fisher Scientific)
for long term storage. The 48 hpf samples were dis-
sected by removing the body away from the yolk and
heart using forceps, and then by removing the entire

head just posterior to the developing otic capsule. For 96
hpf fish, the body was dissected from the yolk and heart
and the eyes were removed using forceps. The entire
head of 96 hpf fish was then removed from the body just
anterior to the pectoral fin buds.
Larval and juvenile fish (8 dpf and 15 dpf) were stored

in RNAlater immediately after euthanizing, and dissec-
tions were conducted in RNAlater at a subsequent date.
The eyes and brain of larval fish were gently removed
with forceps. The head was then removed from the body
anterior to the pectoral girdle by gently pulling the heart
posteriorly away from the head to separate the
pharyngeal arches from the yolk, and by pulling gently
along the pectoral girdle anterior edge to fully separate
the head.

RNA-seq library preparation
Four biological replicates were included for each species
at each stage, where each biological replicate was
produced from pools of the dissected heads of 10 full
siblings sampled at the same stage. We used a different
parental pair for each biological replicate of a given spe-
cies at a given stage (total number of parental pairs
across all stages are: durophage = 5, scale-biter = 6;
inland omnivore = 4, marine omnivore = 5).
Total RNA was extracted using the TRIzol Plus RNA

Purification Kit (Thermo Fisher Scientific) and checked
for quality by running on an agarose gel. A subset of
samples were quality checked for RNA integrity using an
Agilent bioanalyzer.
Total RNA was treated with TURBO DNase

(Thermo Fisher Scientific) followed by mRNA purifi-
cation by processing through the NEBNext Poly(A)
mRNA Magnetic Isolation Module twice (NEB). Iso-
lated mRNA was used as library preparation material
for Illumina sequencing using the NEBNext Ultra
directional kit and NEBNext Multiplex Oligos for
Illumina (NEB) as follows: fragmentation time was re-
duced to 4 min at 96 °C based on empirical results,
final libraries were amplified using 15 PCR cycles,
and final libraries post PCR were size selected using a
two step AMPure bead isolation procedure (0.65×/
0.15×, NEB manual). All libraries were quality
checked by running on a 1.2% agarose gel. A subset
of libraries were size checked on a Agilent bioanaly-
zer. All libraries showed a single peak of approxi-
mately 360–380 bp, indicating an insert size of
around 240–260 bp.
Eight individually barcoded libraries (each lane had 2

libraries of a single species from each of the 4 taxa) were
pooled and sequenced on a single Illumina lane (single
end 150 bp sequencing Illumina HiSeq2500) for a total
of 8 lanes and 64 samples (4 biological replicates for
each of 4 taxa at each of 4 stages). A machine
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malfunction during the flow cell annealing step led to
sequence quality dropping off after 60–100 bp in our
final sequences. This machine was fixed and all libraries
were re-sequenced (again single end 150 bp sequencing
Illumina HiSeq2500). This second sequencing reaction
produced 150 bp reads of high quality throughout the
majority of reads. Running analyses separately on each
sequencing run indicated that there were no major
differences in results between the first and second se-
quencing runs, so reads from both sequencing runs were
pooled and used for downstream analyses.

Bioinformatic analysis of RNA-seq data
Reads were trimmed of adapter sequences and low qual-
ity regions using Trimmomatic [42], and all reads
trimmed to a size shorter than 36 bp were discarded.
Reads were aligned to the Cyprinodon variegatus gen-
ome (C. cyprinodon-1.0) using STAR aligner (version
2.5.1b), mapping only to annotated splicing junctions
with a maximum mismatch of 3 bp per read [43]. Read
counts per gene were generated using STAR quant
mode, which is identical to the HTSeq union method of
counting reads (personal observation; STAR manual).
We observed no differences in mapping rates across taxa
(Additional file 1: Table S1).
We built generalized linear models (GLM) in edgeR to

analyze gene expression differences among pupfish taxa
at each stage. Mitochondrial genes and genes annotated
as pseudogenes were removed prior to analysis. We fil-
tered low expressed genes to include only genes
expressed at a level of at least 1 count per million (cpm;
approx. 15–20 reads) in half of the samples of a given
stage across all taxa, or at a level of 2 cpm in a quarter
of the samples of a given stage across all taxa. With this
filtering criteria, genes expressed in only a single taxon
were maintained in our dataset. Changing the stringency
of our filtering criteria has negligible consequences on
our analyses and does not affect our major conclusions.

Enrichment analyses
We identified 1-to-1 pupfish orthologs as the reciprocal
best blast to zebrafish (NCBI, GRCz10). Gene names
used in this paper correspond to ortholog assignments
to zebrafish using this method. In cases where pupfish
genes could not be assigned to a zebrafish ortholog we
use the annotated pupfish gene identifier. Inspection of
these genes indicated that many were paralogs of known
genes. Teleosts, including pupfish and zebrafish, have
undergone a whole genome duplication and we suspect
that some paralogous gene copies could not be assigned
as 1-to-1 orthologs using a reciprocal best blast ap-
proach. Orthology tables obtained from Zebrafish Model
Organism (ZFIN) and Mouse Genome Informatics

(MGI) databases were used to identify pupfish orthology
relationships to mice and human genes.
We performed gene set enrichment analysis (GSEA,

version 2–2.24) as implemented in the Broad Institute’s
java command line program [44]. Genes were pre-
ranked by either the log2-fold difference in expression
values based on edgeR results, or in a separate series of
analyses by each gene’s loadings on the first 3–4 princi-
pal component axes (see results). We tested for enrich-
ment of gene sets in the GSEA hallmark sets v6 (50
gene sets) and the canonical pathways set v6 (1329 gene
sets) using the classic scoring scheme and conducted
1000 permutations to determine significance. Genes
without human identifiers were excluded from the
analysis. Our results are similar when ranking genes by
the mean log2 fold difference across all pairwise compar-
isons to a focal taxon, or by ranking genes based on
significance.
For overrepresentation analysis, we used Blast2GO soft-

ware to extract gene ontology (GO) annotations for genes
based on BLAST similarity to UniProtKB/Swiss-Prot pro-
tein sequences. The package GOstats, as implemented in
R, was used to perform enrichment analyses [45]. We
additionally used DAVID and WebGestalt software to
perform enrichment analyses using either the zebrafish
reciprocal best blast gene ids (DAVID) or Human gene
symbols (WebGestalt) as gene inputs [46, 47]. Results
from these analyses were used heuristically to manually
curate genes into functional categories [47, 48].

Phylogenetic analysis
SNPs were called from RNA-seq reads using the GATK
haplotype caller following the recommended “Best Prac-
tices” for RNA-seq data. Reads were mapped to the C.
variegatus genome using STAR aligner in a two pass
method that uses the predicted splicing junctions from
the first pass as the annotated splicing junctions for the
second mapping pass. Duplicate reads were marked
using Picard Tools, spiced reads were split using the
GATK splitNcigar tool, and SNPs were called using the
GATK haplotype caller including all libraries and ex-
cluding soft clipped bases. SNPs were filtered using the
GATK Variant Filtration Tool (Fischer Strand >30, > 3
SNPs per 35 bp window, Quality by depth < 2). We used
vcftools to further filter all indels, SNPs with a depth less
than 10, and any missing data. We used bcftools to
extract the consensus sequence for each replicate, and
used bedtools to extract only those regions that had a
coverage of at least 10 reads at all bases and a conti-
guous length of between 50 bp to 1 kb. These regions
were concatenated to produce ~36 Mb of both variant
and invariant exonic sequence (Fig. 2a,b).
We used RAxML to infer phylogenetic relationships

among species. Tips in the phylogeny refer to parental
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pairs used in our experiment. A single durophage pair
was excluded because we only had data for one stage.
Sequence alignments were divided into 14 partitions
using the k means algorithm as implemented in Parti-
tionFinder [49]. We applied a GTR+ gamma model, and
conducted 500 bootstraps to estimate node support. We
found similar tree topologies when running our data as
a single partition and when applying a GTRCAT model
in RAxML indicating that our phylogenetic estimation
from our data is robust to different models (Additional
file 2: Figure S1).

Results
Genome assembly and gene annotation
Total assembled sequence coverage of Illumina sequences
for genome assembly were ~81× using a genome size esti-
mate of 1.0 Gb. The C._variegatus-1.0 assembly

(GCA_000732505.1 accession number) comprises a total of
9259 scaffolds with an N50 scaffold length over 835 Kb
(N50 contig length was 20.8 Kb). The total assembled size
is 899 Mb excluding gaps.
Gene annotation of the C._variegatus-1.0 reference

utilizing the NCBI pipeline generated 23,373 protein-
coding genes and 1010 non-coding genes. A full report
of this predicted gene set is given at https://
www.ncbi.nlm.nih.gov/genome/annotation_euk/Cyprino-
don_variegatus/100/.

Phylogenetic relationships among San Salvador pupfishes
Phylogenetic relationships among species of pupfishes
were determined using SNPs from the RNA-seq dataset
called via the GATK pipeline and alignment of reads to
the C._variegatus-1.0 reference. Of 267,263 variable sites,
202,778 were variable among the Bahamian taxa. The

a b

c d

Fig. 2 Phylogenetic relationships among species of pupfish from San Salvador Island. a Overview of bioinformatic methods to generate sequence
data for phylogenetic analysis. Consensus genome sequences were generated for each parental pair by substituting SNP (red bars) allele assignments.
Genomic intervals for use in phylogenetic analysis were selected based on contiguous regions that had a minimum coverage of 10 reads at every
nucleotide position. We then further selected intervals across all parental pairs such that there was no missing data in our dataset. b The length
distribution of genomic intervals used for phylogenetic reconstruction (from a). Inset shows intervals exceeding 1 kb in length. Many intervals are less
than 10 bp long and some intervals are over 1 kb in length. We restricted our final interval set to regions that were longer than 50 bp and less than
1 kb. c. A maximum likelihood tree built from expressed exonic sequence data produced from the current study, and d. a maximum likelihood tree
built from RAD-seq data, reproduced here from Martin and Feinstein [31, 50]. Note the overall congruence in the inferred phylogenetic relationships
among taxa from both studies. In particular, both studies find a monophyletic San Salvador Island clade and that the marine omnivore population
diverges prior to the speciation of endemic San Salvador taxa. Stars in d. indicate samples from the same populations as those of the current study
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other 64,485 sites were only variable between the San
Salvador Island samples in our study and the reference
genome sequence reflecting the outgroup status of the
Florida population from which our reference is derived.
From these data we concatenated ~36 Mb of both vari-
ant and invariant expressed exonic sequence data that
was used for phylogenetic inference (Fig. 2a,b).
A maximum likelihood (ML) tree estimated from our

concatenated dataset using RAxML placed the marine
omnivore population as an outgroup to a monophyletic
San Salvador clade (Fig. 2c). This agrees with previous
studies based on anonymous genomic loci identified
from a RAD-seq dataset (Fig. 2d) [31, 39, 50]. Thus, des-
pite the marine omnivore and inland omnivore being
morphologically similar and sharing taxonomic identity,
mounting evidence indicates that the marine omnivore
is an outgroup to an endemic San Salvador clade, which
includes all three trophic forms.
Among the three inland trophic forms of pupfish

(scale-biter, durophage, and inland omnivore), we re-
solved the durophage and scale-biter as monophyletic in
concordance with previous studies [31, 39]. However the
inland omnivore is paraphyletic in our ML tree, and
bootstrap support for nodes resolving inland omnivore
samples tend to be low. The durophage and scale biter
comprise less than 10% of all fish in any given lake (per-
sonal observation) [12, 35], and demographic processes
may partially account for why we resolve these taxa as
monophyletic in our tree. Paraphyly of the inland omni-
vore may reflect both incomplete lineage sorting and on-
going introgression among inland taxa [31, 39], or
simply that the durophage and scale biter were derived
from different populations of the inland omnivore. Low
bootstrap support at inland omnivore nodes may also
suggest the presence of a hard polytomy at the root of
the San Salvador Island clade.

Gene expression divergence among Taxa
Using RNA-seq, we measured gene expression in the
heads of each of the four taxa at the following four de-
velopmental stages: (1) 48 h post fertilization (hpf )
analogous to the zebrafish pharyngula period, (2) 96 hpf
corresponding to an embryonic period when jaw and
neurocranial cartilages are forming, (3) 8 days post
fertilization (dpf ) corresponding to larval hatching when
jaw elements are similar between species, and (4) 15 dpf
during a period of juvenile growth when measurable
differences in jaw size among species emerge as a conse-
quence of differential growth of individual bony
elements (Fig. 3a) [13].
Sequencing produced 2.7 billion reads total after filte-

ring (24.3–54.4 million reads per sample). Mapping rates
to the C. variegatus genome using STAR aligner
exceeded 90% of reads being uniquely mapped for all

samples, and we observed no differences in mapping
rates among taxa (Additional file 1: Table S1).
Gene expression varied dramatically across develop-

mental stage owing to true differences in tissue develop-
ment and our slightly different method of dissections at
different stages in an attempt to make the tissue samples
as comparable as possible (Additional file 3: Figure S2).
Within a stage, as expected, expression levels among
libraries derived from all four taxa were highly correlated
(Pearson’s r > 0.9). Because our primary interest is to
understand differences among taxa, we restrict our
subsequent analyses of differential expression to com-
parisons among taxa at the same developmental stage.
Gene expression patterns clearly show separation by

taxon along the first 3 principal component axes (PC)
for all stages (Fig. 3b; Additional file 4: Figure S3).
Nearly half of the total variance in gene expression levels
among samples at each stage is attributable to differ-
ences among taxa. Inland omnivore samples grouped at
all four stages with the durophage samples rather than
with the taxonomically and morphologically similar
marine omnivore samples. At each stage, a single PC
axis separates the marine omnivore population from all
three inland San Salvador taxa mirroring the inferred
phylogenetic relationships from our ML tree. Thus
morphological similarity and gene expression divergence
at a transcriptomic scale appear to be decoupled. This
pattern would fit a model where either only slight modi-
fications and/or modifications to the expression of only
a small proportion of genes contribute to morphological
differentiation. This pattern may also reflect ongoing
introgression among the inland omnivore and the dur-
ophage taxa [31, 39], as well as the accumulation of gene
expression differences with time since common ancestry.

Gene set enrichment suggests modifications to conserved
cellular processes
We used GSEA to test for enrichment of conserved
cellular processes among the genes differentially
expressed among taxa. Our conclusions are largely
congruent across analyses conducted on the hallmark
collection and canonical pathways collection, and so
we confine our discussion to results from enrichment
of hallmark gene sets and direct interested readers to
supplementary tables for more detailed results of
canonical pathways (Additional file 5: Table S2,
Additional file 6: Table S3, Additional file 7: Table S4,
Additional file 8: Table S5, Additional file 9: Table S6
and Additional file 10: Table S7).
We first tested for enrichment of conserved cellular

processes along each of the PC axes at each stage by
ranking genes based on each gene’s loadings on a PC
axis (Table 1; Additional file 5: Table S2 and Additional
file 6: Table S3). As an example, PC1 at 48 hpf largely
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distinguishes the marine omnivore samples from all
three of the inland taxa (Fig. 3b). Genes with positive
loadings on this axis were enriched for cell cycle related
processes such as E2F Targets and Myc Targets, while
genes with negative loadings on this axis were enriched
for genes involved in the epithelial to mesenchymal tran-
sition and KRAS signaling (Table 1; Additional file 5:
Table S2). The first several PC axes that distinguish taxa
at each stage (see Fig. 3b; Additional file 4: Figure S3)
show repeated evidence for enrichment of genes re-
lated to cell cycle control, myogenesis, protein secre-
tion, metabolism, the estrogen response, the
inflammation response, and genes involved in the
epithelial to mesenchymal transition. We observed en-
richment for a number of signaling processes includ-
ing TNF alpha/NF-kB, Interferon alpha and gamma
responses, IL-6/Jak/Stat signaling, KRAS signaling,
Myc signaling, and to a lesser extent Wnt, Tgf-B, and
hedgehog signaling. Results from GSEA enrichment
analysis of canonical pathways were congruent with

results based on the hallmark gene sets (Additional
file 6: Table S3).
We next used GSEA to test for enrichment of gene

sets in the genes over- or underexpressed in either
the durophage or the scale-biter at each developmen-
tal stage relative to all other taxa by ranking genes
based on the estimated log2 fold difference. Perhaps
not surprisingly we found many of the same gene sets
enriched when ranking genes by over- or underex-
pression as we found enriched when ranking genes by
loadings onto the PC axes that distinguish samples by
taxa (Tables 2 and 3; Additional file 7: Table S4,
Additional file 8: Table S5, Additional file 9: Table S6
and Additional file 10: Table S7). We observed enrich-
ment at every stage for gene sets suggesting modification
to cell cycle regulation. In particular, genes underex-
pressed in the scale-biter at 48 hpf and 8 dpf are greatly
enriched for functions related to cell cycle regulation and
progression as further evidenced by enrichment of canon-
ical pathways (Additional file 9: Table S6). We found

Fig. 3 Gene expression patterns differ among species at all sampled stages. a Overview of pupfish development. The four developmental stages
sampled in the current study are outlined with orange boxes. Camera lucida drawings and photos of fish stained for cartilage (blue) and bone
(red) show head morphology at each of the sampled stages. At 48 hpf, fish resemble the pharyngula stage of zebrafish with migratory neural
crest cells aggregated in the undifferentiated pharyngeal arches. By 96 hpf, the neurocranium and jaws first stain positive for cartilage (blue).
Hatching 8 dpf larval fish have a mostly cartilaginous skull, but note the early ossification of dermal jaw bones that are highlighted in the camera
lucida drawing. Morphological differences among pupfish jaws can be first measured in 15 dpf juvenile fish during a period of growth and
increased bone deposition. b Species are separated by gene expression patterns along the first 2–3 principal component axes indicating a major
effect of species in our dataset. A single PC axis typically separates the marine population from all three San Salvador taxa mirroring phylogenetic
relationships from Fig. 2, while the inland omnivore samples tend to be more similar to the durophage samples than to samples from the
morphologically similar marine omnivore population
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Table 1 Enrichment (GSEA) of top Hallmark Gene Sets along principal component axes for each stage

48 Hours Post Fertilization 96 Hours Post Fertilization 8 Days Post Fertilization 15 Days Post Fertilization

PC1
(Separates Marine From Inland
Taxa)

PC1
(Separates Marine From Inland
Taxa)

PC1
(Separates Scale-Biter From Taxa)

PC2
(Separates Marine From Inland
Taxa)

Name NES Name NES Name NES Name NES

Positive Loadings: Positive Loadings: Positive Loadings: Positive Loadings:

E2F Targets 2.84 Interferon Gamma Resp. 2.81 Uv Response Dn 2.53 Myogenesis 2.99

G2M Checkpoint 2.73 Interferon Alpha Response 2.14 Il2 Stat5 Signaling 2.36 Il2 Stat5 Signaling 2.88

Mitotic Spindle 2.17 Xenobiotic Metabolism 2.14 Tnfa Signaling Via Nfkb 2.35 Uv Response Dn 2.86

Protein Secretion 2.14 Bile Acid Metabolism 1.98 Kras Signaling Dn 2.29 Inflammatory Response 2.64

Myc Targets V1 1.86 Protein Secretion 1.82 Allograft Rejection 2.18 Allograft Rejection 2.57

Dna Repair 1.74 Oxidative Phosphorylation 1.80 P53 Pathway 2.10 Kras Signaling Dn 2.54

Xenobiotic Metabolism 1.54 E2F Targets 1.73 Inflammatory Response 1.99 Hedgehog Signaling 2.05

Interferon Alpha
Response

1.51 Glycolysis 1.66 Apical Junction 1.94 Apical Junction 2.04

Estrogen Response Late 1.50 Il6 Jak Stat3 Signaling 1.66 Kras Signaling Up 1.83 Coagulation 2.01

Negative Loadings: Negative Loadings: Negative Loadings: Negative Loadings:

Epith. Mesench. Trans. −3.07 Tnfa Signaling Via Nfkb −1.81 E2F Targets −8.13 Myc Targets V1 −5.97

Coagulation −2.12 Myc Targets V1 −1.74 G2M Checkpoint −6.50 E2F Targets −5.78

Kras Signaling Dn −1.80 Epith. Mesench. Trans. −1.70 Myc Targets V1 −5.56 G2M Checkpoint −4.91

Oxidative
Phosphorylation

−1.63 Apical Junction −1.63 mTORc1 Signaling −4.51 Oxidative Phosph. −4.38

Peroxisome −1.61 Kras Signaling Up −1.62 Oxidative Phosph. −3.06 Myc Targets V2 −4.03

Inflammatory Response −1.53 Androgen Response −1.48 Dna Repair −2.87 mTORc1 Signaling −3.59

Il2 Stat5 Signaling −1.29 Kras Signaling Dn −1.29 Myc Targets V2 −2.84 Dna Repair −3.55

Myc Targets V2 −1.25 Uv Response Dn −1.23 Unfolded Protein Resp. −2.54 Fatty Acid Metabolism −2.91

Pancreas Beta Cells −1.25 Notch Signaling −1.19 Mitotic Spindle −2.50 Unfolded Protein Resp. -2.44

PC2
(Separates Taxa By Morphology)

PC2
(Separates Taxa By Morphology)

PC2
(Separates Marine From Inland
Taxa)

PC3
(Separates Scale-Biter From
Taxa)

Name NES Name NES Name NES Name NES

Positive Loadings: Positive Loadings: Positive Loadings: Positive Loadings:

Myc Targets V1 3.98 Myogenesis 2.92 E2F Targets 6.93 Kras Signaling Dn 2.86

Oxidative Phosph. 3.10 Kras Signaling Up 2.27 Myc Targets V1 5.41 Uv Response Dn 2.64

Dna Repair 2.83 Interferon Gamma Resp. 2.21 G2M Checkpoint 4.95 Myogenesis 2.60

E2F Targets 2.50 Coagulation 1.90 Myc Targets V2 3.80 Epith. Mesench. Trans. 2.55

Myc Targets V2 2.48 Protein Secretion 1.83 Dna Repair 3.07 Tgf Beta Signaling 2.11

G2M Checkpoint 2.03 Apical Junction 1.82 mTORc1 Signaling 3.04 Hedgehog Signaling 2.06

Mitotic Spindle 1.87 Uv Response Dn 1.79 Unfolded Protein
Response

2.86 Apical Junction 2.00

Bile Acid Metabolism 1.66 Epith. Mesench. Trans. 1.79 Oxidative Phosphorylation 1.96 Bile Acid Metabolism 1.96

mTORc1 Signaling 1.27 Kras Signaling Dn 1.74 Pancreas Beta Cells 1.74 Wnt B-Catenin
Signaling

1.91

Negative Loadings: Negative Loadings: Negative Loadings: Negative Loadings:

Hypoxia −2.76 G2M Checkpoint −3.33 Myogenesis −3.90 E2F Targets −5.20

Epith. Mesench. Trans. −2.69 Myc Targets V1 −2.96 Tnfa Signaling Via Nfkb −3.54 mTORc1 Signaling −5.05

Estrogen Response Early −2.28 E2F Targets −2.75 Hypoxia −3.07 Myc Targets V1 −4.85

Pi3K/Akt/mTOR Sig. −1.87 Oxidative Phosphorylation −1.99 Interferon Gamma Resp. −2.86 G2M Checkpoint −4.03
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enriched categories related to Myc signaling, KRAS signal-
ing, fatty acid metabolism, adipogenesis, myogenesis, the
epithelial to mesenchymal transition. Genes related to
the extracellular matrix (e.g. matrisome) were signifi-
cantly enriched in multiple comparisons (Additional
file 9: Table S6 and Additional file 10: Table S7).
Other enriched categories of note include Wnt/B-ca-

tenin signaling, hedgehog signaling, and terms suggestive
of modifications to cytokine signaling such as the in-
flammatory response, TNF alpha signaling, as well as
both Interferon alpha and gamma responses. Genes
overexpressed in the scale-biter at stages 48 hpf, 8 dpf,
and 15 dpf were enriched for functions related to the
estrogen response, while genes underexpressed in the
durophage at 8 dpf and 15 dpf were enriched for func-
tions related to the estrogen response.
Also of note is that we observed enrichment for path-

ways related to neuronal development and functioning at
48 hpf and 96 hpf as well as melanogenesis at 8 dpf,
thereby highlighting both that brain tissue was included in
the embryonic stage samples and that our data likely re-
flect species differences in addition to skull morphology
such as behavior and pigmentation (Additional file 9:
Table S6 and Additional file 10: Table S7).

Identification of a set of genes that may contribute to jaw
morphological variation in pupfishes
To identify genes in our dataset that might be contribut-
ing to skull morphological variation, we found the inter-
section set of genes at each stage that were differentially
expressed (DE; FDR ≤ 0.1 and log2 fold change ≥ 0.2) in
all three possible comparisons to either the scale-biter or
durophage, the two morphologically extreme species
(Fig. 4a; Additional file 11: Figure S4). In our study,
genes called DE by edgeR in any pairwise comparison
were typically differentially expressed by between 1.2
fold to 1.5 fold at an FDR cutoff of 0.1 (median ranged
from 1.3–1.8 fold difference across all comparisons;
Additional file 12: Figure S5, Additional file 13: Figure
S6, Additional file 14: Figure S7 and Additional file 15:
Figure S8). Selecting genes by a more stringent 1.5-fold
or 2-fold change does not affect our major conclusions,
though several genes would not be identified (see

discussion). Intersection sets identified in this way in-
clude ~50–600 genes that are over or underexpressed in
either the scale-biter or durophage species at a particular
stage (Fig. 4b). Below, we refer to these as intersection
sets.
Differentially expressed genes in the intersection sets

were typically either over or underexpressed in just one
taxon relative to the other three (Fig. 4c; Additional file
16: Figure S9). Only between 5 and 18 genes were found
to be DE in both the scale-biter and durophage sets at a
given stage. For example, bbs12 was overexpressed in
the scale-biter and underexpressed in the durophage at
48 hpf. This contrasts to a hypothesized scenario where
most differentially expressed genes are alternately up or
down regulated in the scale-biter and durophage, with
the two omnivore populations being intermediate. Fur-
ther investigation of differentially expressed genes in the
scale-biter and durophage confirm that different sets of
DE genes characterize these extreme phenotypes relative
to the omnivores.
Genes in the intersection sets have varied functional

roles: growth factor signaling molecules, cell cycle regu-
lators, apoptosis related molecules, extracellular matrix
molecules, solute carriers, cytokine/chemokine mole-
cules, and transcription factors known to be involved in
bone development and remodeling (Tables 4, 5, 6 and 7;
Additional file 17: Table S8, Additional file 18: Table S9,
Additional file 19: Table S10, Additional file 20: Table
S11, Additional file 21: Table S12, Additional file 22:
Table S13, Additional file 23: Table S14 and Additional
file 24: Table S15). We find a number of molecules
which function in metabolism, fatty acid synthesis and
lipid transport, and protein sorting. We find members of
five growth factor/paracrine signaling pathways that play
roles in bone growth and remodeling including multiple
Wnt ligands and the Wnt receptor fzd9, Igf binding pro-
teins igfbp2 and igfbp5-like, Bmp receptor bmpr1b
among other Tgf-β related molecules, hedgehog antag-
onist hhip1, and a number of cytokine/chemokine li-
gands and receptors (Tables 4, 5, 6 and 7; Additional file
17: Table S8, Additional file 18: Table S9, Additional file
19: Table S10, Additional file 20: Table S11, Additional
file 21: Table S12, Additional file 22: Table S13,

Table 1 Enrichment (GSEA) of top Hallmark Gene Sets along principal component axes for each stage (Continued)

Protein Secretion −1.76 Myc Targets V2 −1.95 Il6 Jak Stat3 Signaling −2.82 Myc Targets V2 −3.76

Tnfa Signaling Via Nfkb −1.73 Dna Repair −1.85 Epith. Mesench. Trans. −2.74 Dna Repair -3.50

P53 Pathway −1.63 Wnt B-Catenin Signaling −1.72 Uv Response Dn −2.66 Unfolded Protein Resp. −2.77

Kras Signaling Up −1.60 Unfolded Protein
Response

−1.68 Kras Signaling Up −2.62 Oxidative Phosph. −2.29

Myogenesis −1.57 mTORc1 Signaling −1.52 P53 Pathway −2.57 Cholesterol
Homeostasis

−2.19

Shown are the top 9 hallmark pathways for each PC axis at each stage. Gene sets in bold are significant at FDR ≤ 0.25. NES normalized enrichment
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Table 2 Enrichment (GSEA) of top Hallmark Gene Sets for genes over- or underexpressed in the Scale-biter relative to all other taxa.
Genes were pre-ranked by log2 fold change prior to analysis

48 Hours Post Fertilization

Overexpressed in Scale-biter: Underexpressed in Scale-biter:

Name NES Pvalue FDR Name NES Pvalue FDR

Epith. Mesench. Trans. 2.80 0.00 0.00 E2F Targets −3.60 0.00 0.00

Hypoxia 2.27 2.0E-03 0.01 Myc Targets V1 −3.23 0.00 0.00

Kras Signaling Dn 2.08 2.1E-03 0.02 Dna Repair −3.06 0.00 0.00

Estrogen Resp. Early 1.87 0.01 0.07 G2M Checkpoint −2.94 0.00 2.4E-04

Coagulation 1.86 0.01 0.06 Oxidative Phosph. −2.60 0.00 8.8E-04

Tnfa Sig. via Nfkb 1.81 0.02 0.07 Myc Targets V2 −2.53 0.00 1.1E-03

Angiogenesis 1.64 0.04 0.14 Mitotic Spindle -2.29 1.9E-03 3.6E-03

Myogenesis 1.64 0.03 0.12 Interferon Alpha Resp. −1.83 0.01 0.04

P53 Pathway 1.58 0.06 0.14 Mtorc1 Signaling −1.70 0.03 0.07

Kras Signaling Up 1.54 0.05 0.15 Fatty Acid Metabolism −1.65 0.03 0.08

96 Hours Post Fertilization

Overexpressed in Scale-biter: Underexpressed in Scale-biter:

Name NES Pvalue FDR Name NES Pvalue FDR

Myc Targets V1 2.69 0.00 1.2E-03 Bile Acid Metabolism −2.59 0.00 2.0E-03

G2M Checkpoint 1.99 2.0E-03 0.07 Myogenesis −2.44 0.00 3.8E-03

Androgen Response 1.69 0.03 0.21 Interferon Gamma Resp. −2.01 0.01 0.05

E2F Targets 1.69 0.03 0.16 Interferon Alpha Resp. −1.75 0.02 0.15

Myc Targets V2 1.68 0.03 0.13 Inflammatory Response −1.68 0.03 0.18

Unfolded Protein Resp. 1.47 0.07 0.29 Adipogenesis −1.66 0.03 0.16

Notch Signaling 1.44 0.10 0.28 Protein Secretion −1.54 0.06 0.24

Heme Metabolism 1.40 0.11 0.29 Xenobiotic Metabolism −1.51 0.07 0.24

Mtorc1 Signaling 1.25 0.18 0.47 Oxidative Phosphorylation −1.43 0.10 0.30

Tnfa Signaling Via Nfkb 1.11 0.32 0.69 Kras Signaling Up −1.41 0.10 0.28

8 Days Post Fertilization

Overexpressed in Scale-biter: Underexpressed in Scale-biter:

Name NES Pvalue FDR Name Nes Pvalue FDR

Uv Response Dn 2.25 0.00 0.02 E2F Targets −5.90 0.00 0.00

Il2 Stat5 Signaling 2.14 0.01 0.02 G2M Checkpoint −4.88 0.00 0.00

Kras Signaling Dn 2.12 0.00 0.01 Myc Targets V1 −4.18 0.00 0.00

Tnfa Signaling Via Nfkb 1.80 0.02 0.07 Oxidative Phosph. −3.54 0.00 0.00

Angiogenesis 1.59 0.05 0.17 Mtorc1 Signaling −3.42 0.00 0.00

Estrogen Response Early 1.58 0.04 0.15 Mitotic Spindle −2.59 0.00 1.7E-04

Notch Signaling 1.54 0.06 0.16 Fatty Acid Metabolism −2.37 0.00 2.3E-03

P53 Pathway 1.45 0.09 0.21 Dna Repair −2.22 0.00 0.01

Apical Junction 1.45 0.09 0.18 Interferon Alpha Resp. −1.82 0.02 0.05

Inflammatory Response 1.42 0.10 0.19 Glycolysis −1.79 0.02 0.06

15 Days Post Fertilization

Overexpressed in Scale-biter: Underexpressed in Scale-biter:

Name NES Pvalue FDR Name NES Pvalue FDR

Inflammatory Response 2.25 2.0E-03 0.02 Oxidative Phosph. −5.63 0.00 0.00

Cholesterol Homeostasis 2.13 2.1E-03 0.02 Myc Targets V1 −3.70 0.00 0.00
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Additional file 23: Table S14 and Additional file 24:
Table S15).
Overrepresentation analysis indicated that intersection

sets were generally not significantly enriched for GO
terms at an FDR threshold of ≤0.1 (Additional file 25:
Table S16, Additional file 26: Table S17, Additional file
27: Table S18, Additional file 28: Table S19, Additional
file 29: Table S20 and Additional file 30: Table S21). Not-
able exceptions were that the intersection set for the
scale-biter at 48 hpf was significantly enriched for genes
related to cilium and plasma membrane, and the inter-
section set for the scale-biter at 8 dpf was enriched for
carboxylic acid and oxoacid metabolic processes.
To further investigate whether genes known to affect

bony skull elements are within the intersection sets, we
curated a list of over 1700 genes from databases and from
literature searches. We downloaded lists of genes that
have known craniofacial phenotypes from the Zebrafish
Model Organism Database (ZFIN), the Mouse Genome
Informatics Database (MGI), and NCBI Phenotype-
Genotype Integrator (PheGenI) using the search terms
“Cranial Cartilage”, “Cranium”, “Pharyngeal Arch Cartil-
age”, “Ventral Mandibular Arch”, “Craniofacial Develop-
ment” (ZFIN), “Jaw”, “Maxilla”, “Skull”, “Craniofacial”
(MGI), and “Face”, “Jaw Abnormalities”, “Cleft Lip”, “Cleft
Palate” (PheGenI). We also downloaded genes annotated
by the Gene Ontology Consortium with functions related
to craniofacial morphology or bone.
More than 95% of the genes discovered through inter-

section sets have not been previously annotated with
functions directly related to craniofacial morphology or
bone (Fig. 4b,c). Of the genes in the intersection sets
that are annotated to affect bone, most are also anno-
tated to have craniofacial phenotypes indicating that our
literature and database searches were likely to have been
fairly comprehensive (Fig. 4b,c). To assess whether we
identified a greater number of annotated genes in the
intersection sets than would be expected by chance, we
calculated a probability distribution by identifying the
number of curated genes in 1000 randomly drawn sets
of equal size to each of the intersection sets. We found

that none of the sets contained significantly more genes
with previously researched craniofacial phenotypes than
would be expected by chance alone suggesting that the
intersection sets are not statistically enriched for genes
already known, largely from biomedical research, to
affect skull morphology.
The lack of statistically detected enrichment does not

necessarily eliminate curated genes as being important.
For example, if morphological differences are produced
by modified expression of only a few genes then this
would not be detected by overrepresentation analyses.
Thus, we also consider potentially relevant annotated
genes found to be DE in our dataset (Fig. 4c). We find
multiple Wnt ligands either overexpressed in the scale-
biter (wnt11), or underexpressed in in the durophage
(wnt1, wnt10b) at 48 hpf. Wnt signaling is well known
to affect craniofacial morphology [25–27, 29, 51]. While
we note that Wnt ligands were typically DE by less than
1.5 fold, these data along with GSEA results (Tables 1, 2
and 3; Additional file 5: Table S2, Additional file 6: Table
S3, Additional file 7: Table S4, Additional file 8: Table
S5, Additional file 9: Table S6 and Additional file 10:
Table S7), suggest that Wnt signaling may be differen-
tially activated in the two species with extreme jaw
morphologies at an early stage of development.
A number of transcription factors are within the inter-

section sets, including six1, twsg1, sall4 at 48 hpf, fosab,
ncoa3 at 96 hpf, and gata1, sall4, ncoa3, and maf at 8
dpf (Fig. 4c). We found cytokine/chemokine signaling
molecules with known craniofacial phenotypes including
a putative macrophage colony stimulating factor 1
(csf1b) at 96 hpf, and its receptor csf1r at 8 dpf. Both
csf1b and csf1r, are known to play important roles in
osteoclast differentiation [52–54]. Other genes of note
include slc24a4 (associated with enamel formation in
human) [55], smoc1 (associated with craniofacial morph-
ology in human) [56, 57], lbh (craniofacial evolution in
cichlids) [58], ednrb (endothelin signaling) [59, 60],
bambi (Bmp signaling and differential expression during
bone remodeling) [61], and dkk3b (craniofacial evolution
in finches) [62].

Table 2 Enrichment (GSEA) of top Hallmark Gene Sets for genes over- or underexpressed in the Scale-biter relative to all other taxa.
Genes were pre-ranked by log2 fold change prior to analysis (Continued)

Wnt B-Catenin Signaling 2.02 3.9E-03 0.03 Fatty Acid Metabolism −2.52 0.00 0.00

Hedgehog Signaling 1.94 0.01 0.04 Adipogenesis −2.50 0.00 2.3E-04

Pi3K Akt Mtor Signaling 1.94 0.01 0.03 Dna Repair −2.46 0.00 1.9E-04

Allograft Rejection 1.83 0.02 0.05 E2F Targets −2.32 0.00 2.6E-03

Uv Response Dn 1.72 0.02 0.08 Bile Acid Metabolism -2.19 1.9E-03 0.01

Complement 1.70 0.03 0.07 Tnfa Signaling Via Nfkb −1.71 0.02 0.09

Estrogen Response Early 1.50 0.08 0.16 Xenobiotic Metabolism −1.55 0.06 0.17

Apical Junction 1.41 0.10 0.23 Spermatogenesis −1.51 0.07 0.19

Shown are the top 10 genesets shown for each analysis. Gene sets significant at FDR ≤ 0.25 shown in bold
NES Normalized Enrichment, Pvalue Nominal P value, FDR False Discover Rate (Q value)
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Table 3 Enrichment (GSEA) of top Hallmark Gene Sets for genes over- or underexpressed in the Durophage relative to all other
taxa. Genes were pre-ranked by log2 fold change prior to analysis

48 Hours Post Fertilization

Overexpressed in Durophage: Underexpressed in Durophage:

Name NES Pvalue FDR Name NES Pvalue FDR

Inflammatory Response 1.74 0.02 0.39 E2F Targets −2.77 0.00 0

Pancreas Beta Cells 1.65 0.04 0.31 Myc Targets V1 −2.42 0.00 2.74E-03

Uv Response Dn 1.62 0.04 0.23 G2M Checkpoint -2.35 2.0E-03 0.01

Mitotic Spindle 1.53 0.05 0.27 Oxidative Phosphory. −2.30 0 4.76E-03

Epith.Mesench.Trans. 1.43 0.10 0.34 Hypoxia -2.15 2.0E-03 0.01

Myogenesis 1.43 0.08 0.29 Adipogenesis −1.85 0.01 0.06

Hedgehog Signaling 1.31 0.16 0.38 Protein Secretion −1.73 0.02 0.11

Kras Signaling Up 1.17 0.26 0.57 Pi3K/Akt/mTOR Sig. −1.72 0.02 0.10

Il2 Stat5 Signaling 1.12 0.30 0.59 Fatty Acid Metabolism −1.67 0.04 0.11

Apical Junction 0.94 0.53 0.93 Myc Targets V2 −1.64 0.04 0.12

96 Hours Post Fertilization

Overexpressed in Durophage: Underexpressed in Durophage:

Name NES Pvalue FDR Name NES Pvalue FDR

E2F Targets 2.01 0.01 0.12 Hypoxia −2.42 0.00 0.01

Mitotic Spindle 1.95 0.01 0.08 Tnfa Signaling Via Nfkb −1.94 0.01 0.09

Myogenesis 1.83 0.01 0.11 Protein Secretion −1.77 0.01 0.15

Bile Acid Metabolism 1.73 0.03 0.15 Oxidative Phosphorylation −1.55 0.06 0.31

Inflammatory Response 1.71 0.02 0.13 Epith. Mesench.Trans. −1.45 0.09 0.40

Interferon Alpha Resp. 1.70 0.02 0.12 Cholesterol Homeostasis −1.34 0.14 0.53

Myc Targets V1 1.54 0.06 0.22 Il6 Jak Stat3 Signaling −1.33 0.13 0.46

Dna Repair 1.53 0.06 0.20 Estrogen Response Late −1.32 0.15 0.42

Uv Response Dn 1.51 0.06 0.20 Kras Signaling Up −1.31 0.14 0.39

Pi3K/Akt/mTOR Sig. 1.39 0.12 0.30 Estrogen Early Resp. −1.30 0.16 0.36

8 Days Post Fertilization

Overexpressed in Durophage: Underexpressed in Durophage:

Name NES Pvalue FDR Name Nes Pvalue FDR

Myc Targets V1 3.23 0.00 0.00 Protein Secretion -2.34 2.1E-03 0.01

E2F Targets 3.16 0.00 0.00 Coagulation -2.16 1.9E-03 0.02

Allograft Rejection 2.89 0.00 0.00 Uv Response Dn −1.83 0.02 0.11

Oxidative Phosph. 2.85 0.00 0.00 Estrogen Response Early −1.80 0.03 0.10

Dna Repair 2.31 0.00 4.3E-03 Estrogen Response Late −1.78 0.02 0.09

Myc Targets V2 1.90 4.1E-03 0.04 Hypoxia −1.65 0.04 0.15

G2M Checkpoint 1.82 0.02 0.05 Kras Signaling Dn −1.58 0.05 0.17

Mitotic Spindle 1.67 0.04 0.10 Notch Signaling −1.57 0.05 0.16

ROS Pathway 1.61 0.04 0.12 Cholesterol Homeostasis −1.40 0.09 0.30

Interferon Gamma Resp. 1.40 0.11 0.26 Hedgehog Signaling −1.38 0.11 0.28

15 Days Post Fertilization

Overexpressed in Durophage: Underexpressed in Durophage:

Name NES Pvalue FDR Name NES Pvalue FDR

Myogenesis 3.59 0.00 0.00 G2M Checkpoint −4.25 0.00 0.00

Allograft Rejection 3.54 0.00 0.00 E2F Targets −4.05 0.00 0.00
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Constitutive differential expression of genes in the
scale-biter and durophage taxa
Gene expression is dynamic, and it is possible that genes
will be differentially expressed at only critical periods of
time during development. Alternatively, many genes are
constitutively expressed and may be differentially
expressed over relatively long blocks of developmental
time. At a transcriptomic level different genes could fol-
low either of these patterns. We asked what percentage
of genes in the intersection sets follow a pattern of being
differentially expressed at a single time point versus
what percentage are differentially expressed over more
than one time point.
Of the genes in all four scale-biter intersection sets,

227 (22.0%) occur in an intersection set at two or more
stages. Similarly, 79 (18.5%) of all durophage genes occur
in an intersection set at two or more stages. In fact, most
of these genes may be differentially expressed over the
entire course of developmental stages sampled if we
relax the criterion of statistical significance (Fig. 5).
Genes that were overexpressed or underexpressed at one
stage tended to be overexpressed or underexpressed
respectively at all other stages as well, even if not suffi-
ciently so to be deemed statistically significant at an
FDR ≤ 0.1. However, we recognize that there can be im-
portant functional impact of even slight differential ex-
pression [63]. Therefore, when differential expression is
in the same direction (over- or underexpressed) in all
four developmental stages sampled, we refer to these
genes as constitutively differentially expressed.
This pattern holds even when the level at which a gene

is expressed changes through development as seen in the
representative gene boxplots (e.g. igfbp5-like in Fig. 5).
Other genes, however, did not follow this pattern through-
out the experiment. For instance, an interleukin 12b re-
ceptor paralog is expressed in the scale-biter at levels
typical for larval pupfish of all 4 taxa, but this gene is not
differentially expressed at post-hatching stages (Fig. 5).
These results suggest that while ~80% of genes in our
intersection sets are differentially expressed at only a

single time point during development, approximately 20%
of the genes in our scale-biter and durophage intersection
sets are constitutively differentially expressed during the
period of development we sampled. This may be an
underestimate of constitutive expression and we suspect
that a much greater proportion of genes are constitutively
differentially expressed (see discussion).

Expression of previously identified candidate genes in
pupfishes
A fundamental question in evolutionary biology concerns
the extent to which the genetic sources of phenotypic diver-
sity are shared across taxa. Early work identified modifica-
tions to Bmp4 and calmodulin associated with jaw
diversification in both African cichlids and Galapagos
finches [20, 21, 64], as well as modification to Bmp4 con-
tributing to beak differences in ducks and chickens [65].
Given the great divergence time between cichlids and
finches, these studies raised the possibility that modifica-
tions to the expression of Bmp4 and calmodulin might be
responsible for jaw diversity in other taxa, or at least across
all vertebrates.
We asked whether candidate genes known to produce

jaw diversity in other vertebrates were also differentially
expressed at any stage among distinct jaw phenotypes of
pupfishes. We also explored whether genes affecting cra-
nial cartilages identified from a zebrafish mutagenesis
screen were differentially expressed among species of
pupfishes with different jaw phenotypes [66, 67]. In
contrast to the intersection sets, here we are interested
in genes that may be differentially expressed in even a
single pairwise comparison.
Expression levels of bmp4, bmp2, calmodulin, ptch1,

β-catenin and tgfr2, genes associated with changes to
jaw shape (bmp4, calmodulin, tgfr2, ptch1) or size
(bmp2) in finches or cichlids, are expressed at similar
levels among pupfishes at all four stages (Fig. 6a; data
for some genes not plotted). In contrast, however, there
are several genes differentially expressed among pup-
fishes as well as cichlids and finches. Paralogs to camkII

Table 3 Enrichment (GSEA) of top Hallmark Gene Sets for genes over- or underexpressed in the Durophage relative to all other
taxa. Genes were pre-ranked by log2 fold change prior to analysis (Continued)

Interferon Gamma Resp. 2.31 4.0E-03 0.01 Mtorc1 Signaling −2.97 0.00 0.00

Inflammatory Response 2.16 0 0.01 Cholesterol Homeostasis −2.69 0.00 2.2E-04

Bile Acid Metabolism 2.06 2.0E-03 0.01 Myc Targets V1 −2.31 0.00 3.5E-03

Il2 Stat5 Signaling 1.94 0.01 0.03 Oxidative Phosphory. −2.31 0.00 2.9E-03

Interferon Alpha Resp. 1.85 0.01 0.04 Mitotic Spindle -2.17 1.9E-03 0.01

P53 Pathway 1.82 0.01 0.04 Estrogen Response Late −1.65 0.04 0.11

Uv Response Dn 1.74 0.02 0.06 Adipogenesis −1.51 0.06 0.18

Kras Signaling Up 1.73 0.02 0.06 Fatty Acid Metabolism −1.50 0.06 0.17

Shown are the top 10 gene sets shown for each analysis. Gene sets significant at FDR ≤ 0.25 shown in bold
NES Normalized Enrichment, Pvalue Nominal P value, FDR False Discover Rate (Q value)
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Fig. 4 Differentially expressed (DE) genes for four developmental stages of cranial development in four pupfish taxa. These DE genes include genes
which may be contributing to jaw morphological differences among taxa. a Genes associated with the development of distinctive skull morphologies
were selected as the intersection of genes differentially expressed in all pairwise comparisons at a given stage to either the scale-biter or durophage,
the two species with extreme morphologies. b Histograms show number of genes in each intersection. White portion of bars correspond to the
number of genes in each set that are annotated to affect bone. Numbers to right of bars give number of genes annotated to affect bone and total
numbers of genes in each intersection set. c Relative expression of genes annotated to affect skull bones (black) or simply bone (purple) at each stage
in our dataset highlight the relative over- and underexpression of wnt ligands in the scale-biter and durophage respectively at 48 hpf, and that a
number of genes are differentially expressed at multiple stages. Genes in bold are highlighted in the text
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Table 4 Select genes from all four intersection sets that are overexpressed in the scale-biter

Gene Group Gene Name Intersection Set

Apoptosis

aifm3 apoptosis inducing factor, mitochondria associated 3 48hpf 8dpf

aven apoptosis, caspase activation inhibitor 48hpf 96hpf

bnip3 BCL2/adenovirus E1B 19 kDa interacting protein 3 48hpf

LOC107103375 caspase recruitment domain-containing protein 8-like 96hpf

Bardet–Biedl syndrome

bbs12 Bardet-Biedl syndrome 12 48hpf

Calcium Signaling

anxa11 annexin A11 48hpf 96hpf

calb2 calbindin 2 48hpf

calcrl calcitonin receptor like receptor 48hpf

LOC107082646 calpain-1 catalytic subunit-like 48hpf

LOC107081484 calpain-1 catalytic subunit-like 48hpf

LOC107102261 (capn1a) calpain-1 catalytic subunit-like 48hpf

LOC107092503 calpain-9-like 48hpf 96hpf 8dpf

LOC107099392 calpain-9-like 96hpf

clstn3 calsyntenin 3 48hpf

LOC107084037 (s100 s) protein S100-A1-like 48hpf 96hpf

Cell Adhesion

ncam1 neural cell adhesion molecule 1 48hpf

LOC107088148 cadherin-like protein 26 8dpf

LOC107084761 claudin-9-like 8dpf

Cell Cycle

bora bora, aurora kinase A activator 48hpf 96hpf

Cytokine/Chemokine

LOC107100215 (cxcr3.2) C-X-C chemokine receptor type 3-like 48hpf

LOC107100210 C-X-C chemokine receptor type 4-B-like 48hpf

LOC107091150 (il12rb2l) interleukin-12 receptor subunit beta-2-like 48hpf 96hpf

il4r interleukin 4 receptor 15dpf

LOC107087156 (il2rb) interleukin-2 receptor subunit beta-like 15dpf

LOC107092801 (ngfr) tumor necrosis factor receptor superfamily member 16-like 48hpf

tnfrsf21 tumor necrosis factor receptor superfamily member 21 48hpf 96hpf

clcf1 cardiotrophin-like cytokine factor 1 8dpf

Chaperone/Heat Shock

LOC107090055 (dnaja3b) dnaJ homolog subfamily A member 3, mitochondrial-like 96hpf

LOC107081529 heat shock 70 kDa protein 12A–like 15dpf

Lipid Transport

LOC107095514 apolipoprotein A-IV-like 48hpf

apof apolipoprotein F 48hpf

Growth Factor

LOC107086851 (ednrba) endothelin B receptor-like 48hpf

LOC107083579 (epha6) ephrin type-A receptor 6-like 48hpf

LOC107084161 fibroblast growth factor 13-like 48hpf

flt1 fms-related tyrosine kinase 1 48hpf
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Table 4 Select genes from all four intersection sets that are overexpressed in the scale-biter (Continued)

BMP

bambi BMP and activin membrane-bound inhibitor 8dpf

bmpr1b bone morphogenetic protein receptor type IB 8dpf

IFG signaling

igfbp2 insulin like growth factor binding protein 2 48hpf 96hpf 8dpf 15dpf

LOC107084241 insulin-like growth factor-binding protein 5 48hpf 96hpf 8dpf 15dpf

igflr1 IGF like family receptor 1 8dpf

Matrix

adam22 ADAM metallopeptidase domain 22 48hpf

crtap cartilage associated protein 48hpf 96hpf

LOC107101759 collagen alpha-1(XXVIII) chain-like 48hpf

col5a3 collagen, type V, alpha 3 48hpf

col16a1 collagen, type XVI, alpha 1 48hpf

LOC107098087 (col8a1b) collagen alpha-1(VIII) chain-like 96hpf

LOC107101792 (col15a1b) collagen alpha-1(XV) chain-like 96hpf

LOC107084752 integrin beta-3-like 48hpf

fstl3 follistatin-like 3 (secreted glycoprotein) 48hpf

LOC107092333 (fndc7) fibronectin type III domain-containing protein 7-like 48hpf

LOC107081663 (mmp16b) matrix metalloproteinase-16-like 48hpf

otol1 otolin 1 48hpf

LOC107089461 (phlda2) pleckstrin homology-like domain family A member 2 48hpf

plekhh2 pleckstrin homology, MyTH4 and FERM domain containing H2 48hpf 96hpf 8dpf 15dpf

plod1 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 48hpf

LOC107097692 (sparcl1) SPARC-like protein 1 48hpf

smoc1 SPARC related modular calcium binding 1 96hpf

fstl4 follistatin-like 4 8dpf

LOC107101284 thrombospondin type-1 domain-containing protein 7A–like 8dpf

LOC107101285 thrombospondin type-1 domain-containing protein 7A–like 8dpf

Muscle

LOC107095331 myosin-16-like 48hpf

LOC107082773 (tpm1) tropomyosin alpha-1 chain-like 48hpf

LOC107089161 troponin I, slow skeletal muscle-like 48hpf 96hpf

Tgf-beta

tgfbi transforming growth factor beta induced 48hpf

Transciption Factor

evx1 even-skipped homeobox 1 48hpf

meox1 mesenchyme homeobox 1 48hpf

sp4 Sp4 transcription factor 48hpf 96hpf 8dpf

LOC107087726 sal-like protein 1 96hpf

LOC107093901 (ncoa3) nuclear receptor coactivator 3-like 96hpf 8dpf

sall4 spalt-like transcription factor 4 8dpf

LOC107084340 (mafb) transcription factor Maf-like 8dpf

Wnt

wnt11 wingless-type MMTV integration site family member 11 48hpf

ilkap ILK associated serine/threonine phosphatase 96hpf

Lencer et al. BMC Genomics  (2017) 18:424 Page 17 of 33



and other calmodulin dependent kinases are differen-
tially expressed among pupfish taxa (Additional file 31:
Table S22), and shh tends to be slightly overexpressed in
the scale-biter (Fig. 6a). The Wnt signaling antagonist
dkk3b, but not dkk3a, is underexpressed in the scale-
biter at 15 dpf. The transcriptional activator, lbh, is over-
expressed in the scale-biter at 48 hpf (Fig. 4) [58].
Three candidate genes emerging from a zebrafish mu-

tagenesis screen, wnt11, ednra, and ednrb [59, 66, 67],
are overexpressed in the scale-biter, and may contribute
to the extreme jaw morphology of this species. Wnt11
function is absent or reduced in zebrafish Silberblick
(wnt11/slb) mutants that exhibit dramatic abnormalities
to the anterior portions of the skull [23, 51, 66] reminis-
cent of the differences in anterior skull bone morph-
ology between the scale-biters and other species of
pupfishes (e.g. oral jaw bone length). We also find that
ednra and ednrb, receptors for Edn1 signaling, are differ-
entially expressed across species of pupfishes (Fig. 6b).
Edn1 was identified as the zebrafish Sucker (edn1/suc)
mutant, and work in mouse and chicken has indicated
that disrupting the expression of Ednra also results in
abnormal jaw morphologies [59, 68–70].

Expression in pupfishes of osteoblast and osteoclast
marker genes
Genes found to be differentially expressed among pup-
fishes contained a number of molecules known to affect
osteoblast and osteoclast differentiation, proliferation,
and apoptosis. We were thus interested in whether genes
commonly used as genetic markers of osteoblast and
osteoclast activity were differentially expressed. We

investigated more closely the expression patterns of four
osteoblast marker genes runx2, rankl, csf1b, and alkaline
phosphatase, as well as six osteoclast expressing genes
including rank, calcitonin receptors calcrl and calcr, ca-
thepsin K, and acp5 (tartrate resistant acid phosphatase)
in order to determine whether there was a signal of cell
types being more or less active or abundant in some spe-
cies relative to others.
Genes associated with osteoblast activity were typically

not differentially expressed among species of pupfishes
(Fig. 7). The one exception was a putative ortholog of
the zebrafish macrophage colony stimulating factor 1b
(csf1b), a gene also identified in the intersection sets,
that tended to be constitutively underexpressed in the
durophage at all developmental stages. Mammalian
osteoblast/stromal cells are known to express Csf1 as a
molecule that affects osteoclast differentiation, recruit-
ment, and activity [52–54].
A number of osteoclast expressing genes were differ-

entially expressed in our dataset. Calcitonin receptors
and cathepsin K were slightly overexpressed in the scale-
biter at embryonic stages of development, and both rank
and acp5 were overexpressed in the scale-biter at 15 dpf,
during a period of larval growth. These data suggest that
osteoclast activity or number may differ among species
of pupfishes, with perhaps osteoclast activity lower in
the durophage and relatively higher in the scale-biter.
Intriguingly, osteoclast marker genes were not differen-
tially expressed in all pairwise comparisons and genes
that were differentially expressed tended to be DE at dif-
ferent stages. This perhaps suggests that either only
osteoclast activity, and not number, is differentially

Table 4 Select genes from all four intersection sets that are overexpressed in the scale-biter (Continued)

Other

lbh limb bud and heart development 48hpf

LOC107088691 (npdc1a) neural proliferation differentiation and control
protein 1-like

48hpf

rps6kl1 ribosomal protein S6 kinase like 1 48hpf 96hpf

LOC107087452 ribosomal protein S6 kinase beta-1-like 8dpf 15dpf

LOC107095875 sex comb on midleg-like protein 4 48hpf

LOC107102698 tissue factor-like 48hpf

slc24a4 solute carrier family 24 (sodium/potassium/calcium exchanger),
member 4

48hpf 96hpf 8dpf

acp7 acid phosphatase 7, tartrate resistant (putative) 8dpf

vwa1 von Willebrand factor A domain containing 1 8dpf

vwde von Willebrand factor D and EGF domains 8dpf

LOC107081298 von Willebrand factor-like 8dpf

c1galt1 core 1 synthase, glycoprotein-N-acetylgalactosamine
3-beta-galactosyltransferase 1

15dpf

mpeg1 macrophage expressed 1 15dpf

Shown are pupfish gene names with zebrafish gene names in parentheses

Lencer et al. BMC Genomics  (2017) 18:424 Page 18 of 33



Table 5 Select genes from all four intersection sets that are underexpressed in the scale-biter

Gene Group Gene Name Intersection Set

Apoptosis

api5 apoptosis inhibitor 5 48hpf

LOC107081897 caspase-1-like 15dpf

Bardet–Biedl syndrome

bbs2 Bardet-Biedl syndrome 2 48hpf 96hpf

bbs5 Bardet-Biedl syndrome 5 48hpf

Calcium Signaling

LOC107088690 annexin A3-like 48hpf

capn5 calpain 5 48hpf

calu calumenin 48hpf

Cell Adhesion

cdh20 cadherin 20, type 2 48hpf

cdh17 cadherin 17, LI cadherin (liver-intestine) 8dpf

cldn12 claudin 12 48hpf

LOC107103695 claudin-3-like 48hpf

LOC107103700 claudin-4-like 48hpf

LOC107084763 claudin-4-like 8dpf

LOC107100707 sialoadhesin-like 15dpf

Cell Cycle

cdca7 cell division cycle associated 7 48hpf

ccny cyclin Y 48hpf 96hpf 8dpf

Cytokine/Chemokine

il6st interleukin 6 signal transducer 48hpf 96hpf 15dpf

LOC107089554 interleukin-21 receptor-like 8dpf

LOC107096536 C-C motif chemokine 3-like 8dpf

Chaperone/Heat Shock

LOC107082103 dnaJ homolog subfamily B member 9-like 48hpf 96hpf 8dpf 15dpf

LOC107091513 dnaJ homolog subfamily C member 16-like 48hpf 8dpf

LOC107095621 dnaJ homolog subfamily C member 3-like 48hpf

LOC107088964 dnaJ homolog subfamily B member 5-like 96hpf

Lipid Transport

fabp6 fatty acid binding protein 6, ileal 48hpf

LOC107101094 fatty acid-binding protein 10-A, liver basic-like 48hpf

fabp3 fatty acid binding protein 3, muscle and heart 96hpf 8dpf

LOC107096181 fatty acid-binding protein, brain-like 96hpf 8dpf

LOC107081410 fatty acid-binding protein, heart-like 96hpf 15dpf

LOC107086290 fatty acid-binding protein, liver-type-like 8dpf

LOC107082973 apolipoprotein A-IV-like 8dpf

LOC107095516 apolipoprotein Eb-like 8dpf

Growth Factor

sh2d3c SH2 domain containing 3C 8dpf

BMP

LOC107089450 activin receptor type-2B-like 48hpf 96hpf

Matrix
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activated, or that RNA-seq is not sensitive enough to
pick up differential expression in each of these genes.

Discussion
This paper presents foundational data as a first step to-
wards addressing the fundamental question of how

phenotypic variation is produced during the early stages
of diversification, here among three closely related spe-
cies. We use RNA-seq to study gene expression diver-
gence associated with ecological and morphological
diversification in three species of Cyprinodon pupfishes
that are estimated to have diverged in only the last

Table 5 Select genes from all four intersection sets that are underexpressed in the scale-biter (Continued)

LOC107082466 cartilage acidic protein 1-like 48hpf 96hpf 15dpf

LOC107093562 collagen alpha-1(XXVIII) chain-like 48hpf

LOC107094934 collagen alpha-2(I) chain-like 96hpf

LOC107086858 collagen alpha-4(IV) chain-like 8dpf

LOC107097307 disintegrin and metalloproteinase domain-containing
protein 10-like

48hpf

fsd1 fibronectin type III and SPRY domain containing 1 48hpf

fbln2 fibulin 2 48hpf 96hpf 8dpf 15dpf

plekhg1 pleckstrin homology and RhoGEF domain containing G1 48hpf

LOC107097201 integrin alpha-D-like 96hpf

Muscle

myo7a myosin VIIA 48hpf

LOC107097407 myosin-7B-like 48hpf 96hpf

LOC107087696 myosin-11-like 8dpf

Tgf-beta

tbrg4 transforming growth factor beta regulator 4 48hpf

Transciption Factor

irx6 iroquois homeobox 6 48hpf

gata6 GATA binding protein 6 8dpf

LOC107090297 GATA zinc finger domain-containing protein 14-like 15dpf

Wnt

fzd9 frizzled class receptor 9 48hpf

wnt2b wingless-type MMTV integration site family member 2B 48hpf

LOC107090002 dixin-A-like 96hpf 8dpf

LOC107098026 dickkopf-related protein 3-like 15dpf

Other

LOC107101384 adipocyte plasma membrane-associated protein-like 48hpf

clptm1 cleft lip and palate associated transmembrane protein 1 48hpf

fkbp2 FK506 binding protein 2 48hpf

foxj3 forkhead box J3 48hpf

oraov1 oral cancer overexpressed 1 48hpf 8dpf 15dpf

smarcd2 SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily d, member 2

48hpf

LOC107105123 syndecan-2-like 48hpf

LOC107087936 transcription regulator protein BACH1-like 96hpf

LOC107083667 alkaline phosphatase-like 8dpf

setd6 SET domain containing 6 48hpf 96hpf 8dpf 15dpf

ptgr2 prostaglandin reductase 2 15dpf

LOC107094401 kallikrein-7-like 15dpf

Shown are pupfish gene names with zebrafish gene names in parentheses
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6000–10,000 years [12, 35]. RNA-seq reveals the amount
of mRNA transcription, and may detect both changes to
spatial location of genes as well as altered onset or offset
of expression across species.

Gene expression divergence is known to accumulate
with time since common ancestry [71–73]. Even at the
shallow divergence time studied here, patterns of gene
expression divergence appear to reflect phylogenetic

Table 6 Select genes from all four intersection sets that are overexpressed in the durophage

Gene Group Gene Name Intersection Set

Apoptosis

LOC107095016 (aifm4) apoptosis-inducing factor 3-like 48hpf 96hpf 8dpf 15dpf

LOC107104525 apoptosis-stimulating of p53 protein 2-like 8dpf

bag1 BCL2 associated athanogene 1 48hpf

LOC107103519 caspase recruitment domain-containing protein 8-like 15dpf

Calcium Signaling

anxa1 annexin A1 48hpf

capn3 calpain 3 48hpf

capn5 calpain 5 48hpf

Cell Adhesion

LOC107095872 (cdh4) cadherin-4-like 48hpf

LOC107093297 claudin-4-like 96hpf

Cytokine/Chemokine

tnfaip3 TNF alpha induced protein 3 48hpf 96hpf 8dpf

Chaperone/Heat Shock

dnajc27 Hsp40 48hpf 8dpf

LOC107099519 (dnajc11) dnaJ homolog subfamily C member 11-like 48hpf

Growth Factor

LOC107091872 (epha4b) ephrin type-A receptor 3-like 48hpf

LOC107090696 ephrin type-B receptor 2-like 48hpf

LOC107086153 platelet-derived growth factor receptor-like protein 8dpf

Extracellular Matrix

LOC107102808 integrin beta-2-like 48hpf

LOC107088257 integumentary mucin A.1-like 48hpf

col16a1 collagen, type XVI, alpha 1 8dpf

thsd1 thrombospondin type 1 domain containing 1 96hpf

LOC107083667 alkaline phosphatase-like 15dpf

Muscle

myoz3 myozenin3 15dpf

Transcription Factors

atoh8 atonal bHLH transcription factor 8 48hpf

gatad2b GATA zinc finger domain containing 2B 48hpf

ncoa1 nuclear receptor coactivator 1 48hpf 96hpf 8dpf

LOC107081391 nuclear receptor coactivator 1-like 48hpf 96hpf 8dpf 15dpf

six1 SIX homeobox 1 48hpf

six4 SIX homeobox 4 48hpf

Other

LOC107098473 von Willebrand factor A domain-containing protein 7-like 48hpf

LOC107084756 toll-like receptor 2 type-2 15dpf

Shown are pupfish gene names with zebrafish gene names in parentheses
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Table 7 Select genes from all four intersection sets that are underexpressed in the durophage

Gene Group Gene Name Intersection Set

Apoptosis

bag2 BCL2 associated athanogene 2 48 hpf

LOC107082055 (casp8l2) caspase-8-like 48 hpf

Bardet–Biedl syndrome

bbs12 Bardet-Biedl syndrome 12 48 hpf 96 hpf

Calcium Signaling

anxa10 annexin A10 48 hpf

LOC107089898 (camkk1a) calcium/calmodulin-dependent protein kinase kinase 1-like 96 hpf 15 dpf

Cell Adhesion

cd302 CD302 molecule 48 hpf 96 hpf

LOC107104323 (bub1) mitotic checkpoint serine/threonine-protein kinase BUB1-like 48 hpf

LOC107097627 protocadherin beta-16-like 96 hpf

LOC107100986 (pcdh10b) protocadherin-10-like 96 hpf

LOC107105174 cell adhesion molecule 2-like 8dpf

Cell Cycle

LOC107092486 (aunip) aurora kinase A and ninein-interacting protein-like 48 hpf

cdc20 cell division cycle 20 48 hpf

cdca7l cell division cycle associated 7-like 48 hpf 96 hpf

Cytokine/Chemokine

LOC107085925 C-C motif chemokine 25-like 48 hpf

traf4 TNF receptor associated factor 4 96 hpf

LOC107095001 (csf1ra) macrophage colony-stimulating factor 1 receptor 1-like 8dpf

LOC107090375 (csf1b) uncharacterized (macrophage colony stimulating factor 1b) 96 hpf

Chaperone/Heat Shock

LOC107086201 heat shock 70 kDa protein 12A–like 48 hpf

Growth Factor

LOC107082400 endothelin B receptor-like 48 hpf

LOC107086153 platelet-derived growth factor receptor-like protein 48 hpf

flt1 fms-related tyrosine kinase 1 96 hpf

IFG signaling

LOC107082691 (igfbp7) insulin-like growth factor-binding protein 7 96 hpf

Matrix

LOC107101414 FRAS1-related extracellular matrix protein 2-like 48 hpf

LOC107103703 FRAS1-related extracellular matrix protein 2-like 48 hpf

LOC107094308 integrin beta-1-like 48 hpf

pcolce2 procollagen C-endopeptidase enhancer 2 48 hpf

otol1 otolin 1 96 hpf 8dpf

Muscle

LOC107103762 (mybpha) myosin-binding protein H-like 8dpf 15 dpf

BMP/Tgf-beta

twsg1 twisted gastrulation BMP signaling modulator 1 48 hpf

Transciption Factors

dbx2 developing brain homeobox 2 48 hpf

hes3 hes family bHLH transcription factor 3 48 hpf
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estimates of time since common ancestry, at least
partially. Our data support other studies placing the
marine omnivore population as the sister group to a
clade of San Salvador pupfishes [31, 39], suggesting that
the durophage and scale-biter species evolved from one
or multiple inland omnivore population(s) present in the
salt water lakes of San Salvador Island. We find that the
marine omnivore differs from the inland taxa by a single
PC axis at each stage, possibly reflecting the divergence
of the inland forms following colonization of San Salvador
by the marine lineage. Interestingly, in contrast to an ex-
pected scenario where morphologically similar omnivore
populations are also most similar in gene expression pat-
terns, principal component analyses of gene expression
variance grouped the inland omnivore with the endemic
inland durophage rather than the morphologically similar
marine omnivore. This unexpected result could reflect
time since common ancestry or ongoing introgression
among these two taxa [31, 39] or both.
Gene set enrichment analysis suggested that a number

of conserved cellular processes may be differentially regu-
lated among species of pupfishes including Wnt signaling,
hedgehog signaling, myogenesis, adipogenesis, the inflam-
mation response, and fatty acid metabolism. Many of the
gene sets identified as enriched are related to cell cycle
regulation, perhaps indicating differences in rates of cell
proliferation among species. Of particular note was en-
richment for targets of Myc transcription factor activity.
Myc is an immediate early response transcription factor
that among other roles mediates a cellular response to
growth factors. Previous work on transcriptional re-
sponses to diet in cichlid fishes and bone loading in mouse
have both implicated gene expression modifications to
immediate early response genes [61, 74].
GSEA suggested that the expression of genes function-

ing in the epithelial to mesenchymal transition, as well
as the estrogen response, may be differentially modified
in pupfish species. Both craniofacial morphology and

pigmentation differ among pupfish species, and both of
these traits are derived from neural crest cells that
undergo an epithelial to mesenchymal transition prior to
migration. Estrogen signaling is known to affect bone
and has been shown to underlie skull sexual dimorphism
in Anolis carolinensis [75].

Identification of genes of interest
To identify specific genes of interest, we focused on the
intersection sets of genes differentially expressed in all
three comparisons to either the durophage or scale-biter,
the two species with extreme morphologies. The ration-
ale for this approach is that if a set of genes is differen-
tially expressed in all three comparisons with an extreme
phenotype, these expression differences are likely to be
biologically meaningful.
Genes identified by intersection sets were typically over

or underexpressed in only a single taxon (Additional file 16:
Figure S9). While we cannot rule out that jaw morpho-
logical differences among these species of pupfishes
are produced by fine-tuning the activity of the same
upstream regulators, if this were the case we would
have expected to see extensive sharing of differential
expression of downstream target genes. It is intriguing
to consider that differences appearing as opposite
ends of a morphological spectrum (e.g. short jaws vs.
long jaws) may be produced by tweaking different
aspects of a jaw developmental program.
Our study compares closely related wild taxa, di-

verged as recently as 10,000 years. As such, we would
not expect large-fold differential gene expression and
we are keenly aware that subtle changes in gene
expression can have significant phenotypic conse-
quences. For instance, small changes to the quantita-
tive amount of Shh expression in the developing head
of chickens has substantive phenotypic consequences
for craniofacial morphology [9, 63]. Evolution operates
by tinkering with existing genetic/developmental

Table 7 Select genes from all four intersection sets that are underexpressed in the durophage (Continued)

sall4 spalt-like transcription factor 4 48 hpf

Wnt

LOC107099028 (tmem88b) transmembrane protein 88-like 48 hpf

wnt1 wingless-type MMTV integration site family member 1 48 hpf

wnt10b wingless-type MMTV integration site family member 10b 48 hpf

Other

sipa1l3 signal-induced proliferation-associated 1 like 3 48 hpf 8dpf

tfpi2 tissue factor pathway inhibitor 2 48 hpf

LOC107100889 myeloid-associated differentiation marker homolog 8dpf

LOC107104594 TRPM8 channel-associated factor homolog 8dpf

mos v-mos Moloney murine sarcoma viral oncogene homolog 15 dpf

Shown are pupfish gene names with zebrafish gene names in parentheses
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processes, and the striking morphological differences
among species of pupfishes may be produced by
slight modifications to gene expression. Despite a
number of RNA-seq or microarray studies on closely
related species there is still no expectation for the
magnitude of biologically relevant gene expression di-
vergence between species. An RNA-seq study of cich-
lid pharyngeal jaws found modest expression changes
among morphs within the range of what we find
among species of pupfishes [74]. Rather than arbitrar-
ily discarding everything except the most dramatically
over or underexpressed genes, we opted to use a
lower threshold of differential expression but lever-
aged the fact that we have three comparisons for each
focal taxon in order to limit our set of DE genes to
those most likely to be biologically meaningful.

We applied a log2 0.2 fold change threshold to
label genes as DE, in contrast to many other gene ex-
pression studies targeting larger expression differences
among treatments by using a 1.5- or 2-fold change
threshold to identify genes of interest. Applying this
higher threshold to our data does not substantially
change our conclusions (Additional file 17: Table S8,
Additional file 18: Table S9, Additional file 19: Table S10,
Additional file 20: Table S11, Additional file 21: Table S12,
Additional file 22: Table S13, Additional file 23: Table S14
and Additional file 24: Table S15). However, using the
higher threshold, wnt ligands would not have been
identified (wnt ligands were DE by 1.2–1.48 fold in
any pairwise comparison). Additionally, a number of
genes in the intersection sets would be excluded with
a higher threshold simply because a single

Fig. 5 Relative expression of differentially expressed genes shows that many genes are differentially expressed in all four stages. Heatmap shows
relative expression at each stage for genes represented in two or more durophage or scale-biter intersection sets. The overall pattern of relative
expression trends to be similar at all four stages for this set of genes indicating constitutive differential expression. For instance, genes over- or
underexpressed in the scale-biter tend to also be over- or underexpressed at other stages as well. Boxplots show expression patterns for three
representative genes that may also be relevant to skull morphology based on function. Note how the pattern of expression for igfbp2, igfbp5 is
similar across all four stages even when the species-wide mean expression changes across stages, while the interleukin 12 receptor paralog,
il12rb2-like, is greatly overexpressed in the scale-biter at embryonic stages, but not at post-hatching stages
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comparison was slightly below the threshold, although
even at the higher threshold, the two other compari-
sons categorized them as DE. Requiring genes to be
DE in all three comparisons, even with a lower
threshold, is already a stringent criterion. A threshold
of 1.5 or 2 fold is arbitrary, but detecting a difference
in all three comparisons suggests biological meaning.
While the main focus of our project was to iden-

tify genes differentially expressed among species of
pupfishes, our data are also interesting for those

genes not differentially expressed. Genes, such as
Bmp4 and calmodulin, which are thought to be key
determinants of jaw morphology in African cichlids
and Galapagos finches are notably not differentially
expressed in pupfishes with distinctive jaw pheno-
types (Fig. 6). While it is very possible that these
genes could be differentially expressed at time points
not sampled, our data suggest that the sources of
skull diversity in pupfishes differs from what has
been shown for these other vertebrate taxa. We

a

b

Fig. 6 Expression of several candidate genes associated with jaw morphological diversification in other taxa (a) or identified as affecting jaw and
cranial morphology from a zebrafish mutagenesis screen (b). a Boxplots of gene expression levels for each species at all four stages of development.
Gene expression values were measured as log2 transformed reads per kilobase per million reads (RPKM) for a set of candidate genes known to affect
skull or cranial morphology in other wild vertebrates. These genes are not differentially expressed among different species of pupfish, with the
exception of shh that tends to be slightly overexpressed in the scale-biter, and dkk3b which is underexpressed in the scale-biter. b Expression of four
genes identified from a zebrafish mutagenesis screen that may contribute to jaw morphological differences among species of pupfish. Note that while
edn1 is not differentially expressed, two endothelin receptors are. Letters indicate significant differential expression (FDR ≤ 0.1) in pairwise comparisons
at each stage. Letters are omitted from stages where no pairwise comparisons are significant

Lencer et al. BMC Genomics  (2017) 18:424 Page 25 of 33



cannot rule out the possibility that RNA-seq is either
not sensitive enough to pick up a very slight change
in the expression of these genes, or that these genes
are post-transcriptionally modified.
Among the genes that were identified by RNA-seq as

possibly related to jaw diversification in pupfishes are sev-
eral that code for molecules functioning in growth factor
signaling and cytokine signaling. These functional groups
are particularly interesting because they point to genes of
interest as well as possible cellular-developmental pro-
cesses underlying the origins of jaw morphological diver-
sity. Below we outline three hypotheses that emerge from
our RNA-seq data.

Wnt signaling
We found multiple wnt ligands to be differentially
expressed among pupfish taxa at 48 hpf. We note that
these genes would not have been identified had we
applied a 1.5 fold change threshold, though GSEA ana-
lysis did identify enrichment of Wnt signaling in some
comparisons. At 48 hpf, neural crest cells contributing
to jaw development are relatively undifferentiated and
aggregated in the pharyngeal pouches of the pupfish
head. After this stage, embryos experience a period of
rapid growth and formation of cranial cartilages.
Wnt signaling plays an established role in bone develop-

ment, regulating the growth, differentiation, and functioning

Fig. 7 Expression of genes commonly used as molecular markers of osteoblast and osteoclast cells indicate that genes functioning in osteoblast
differentiation are typically not differentially expressed among species of pupfish, while a number of osteoclast expressed genes tend to be
overexpressed in the scale-biter and underexpressed in the durophage. Gene expression values were measured as log2 transformed RPKM similar
to Fig. 6. Letters indicate significant differential expression (FDR ≤ 0.1) in pairwise comparisons at each stage. Letters are omitted from stages
where no pairwise comparisons are significant

Lencer et al. BMC Genomics  (2017) 18:424 Page 26 of 33



of bone remodeling cells such as osteoblasts [54, 76]. Modi-
fications to Wnt signaling have been shown to affect bone
mass and homeostasis in general [76], and to affect craniofa-
cial development in particular [25–27, 29, 51, 77]. Chief
among genes we identified as overexpressed in the scale-
biter is wnt11, which is identified as the gene affected in zeb-
rafish silberblick mutants [51]. Zebrafish lacking functional
Wnt11 show dramatic reductions to the anterior skull ele-
ments, the same bony skull elements most different among
species of pupfishes. Interestingly, the phenotypic effect of
the Wnt11 gene in zebrafish is modified by the transmem-
brane protein Tmem88 [78]. Zebrafish double morpholino
knockdowns targeting both wnt11 and tmem88 expression
have more extreme phenotypes. In pupfishes, tmem88 is
underexpressed in the durophage at the same stage that
wnt11 is overexpressed in the scale-biter.
Wnt signaling has been shown to be associated with

jaw diversification in African cichlids [26, 79], with the
evolution of a fused maxilla in the bird beak [27], and
with the specification and morphogenesis of jaw struc-
tures in mice [25, 77]. Thus Wnt signaling is emerging
as an important source of craniofacial variation in wild
taxa. With the exception of wnt2b, Wnt ligands were
consistently overexpressed in the scale-biter and under-
expressed in the durophage (Fig. 4). This raises the hy-
pothesis of whether Wnt signaling is differentially
regulated in the scale-biter and durophage taxa at early
embryonic stages, a result further supported by GSEA
results. That we find multiple Wnt ligands all differen-
tially expressed at the same stage suggests that a process
upstream of Wnt may be differentially regulated. Hedge-
hog signaling often regulates and is co-regulated by Wnt
ligand production in other systems, and is thus an obvi-
ous candidate. In the head, Wnt signaling is known to
interact with a frontal nasal cell proliferative zone (FEZ)
marked by adjacent shh/fgf8 expression domains [15, 27,
80]. Thus multiple avenues are available for future work
experimentally manipulating Wnt ligands and exploring
how Wnt interactions with shh/fgf8 expression are modi-
fied (or not) among species of pupfishes.

Insulin-like growth factor signaling
Insulin-like growth factors (IGF-1 and IGF-2) are two
of the most abundant growth factors in bone,
inducing a number of transcriptional responses in
myoblasts, chondrocytes, and osteoblasts that affect
cellular differentiation, activity, and rates of bone
deposition and homeostasis [54, 81]. IGF-1 has been
associated with variation in dog breed size [82], but a
function for IGF-1 signaling in skull formation is less
well understood (though see [83, 84]). In the extra-
cellular matrix, Igf proteins bind to Igf binding
proteins, and the cellular responses to Igf proteins
are strongly dependent on the presence of different

Igf binding proteins [54]. We found two binding pro-
teins, igfbp2 and igfbp5-like (most probably one of
two igfbp5 paralogs), to be greatly overexpressed in
the scale-biter at all stages. Transcript abundance of
igfbp2 in the scale-biter was more than 2-fold that of
other species indicating substantial up-regulation and
both genes would have been identified with a higher
DE threshold, highlighting the extreme overexpres-
sion of these genes in the scale-biter. Further sup-
porting a potential role for Igf signaling is that GSEA
identified enrichment of Igf signaling in genes
overexpressed in the scale-biter (Additional file 9:
Table S6). The effects of Igf binding proteins on bone
growth and homeostasis are typically complex and
depend on numerous factors [54]. In mammalian sys-
tems igfbp2 has been associated with both negative
regulation of bone mass [85, 86] and positive stimu-
lation of osteoblast differentiation and activity [87],
while igfbp5 has typically been associated with in-
creased bone deposition [54]. Interestingly, we also
find a number of genes related to metabolism and
lipid transport that would be concordant with altered
cellular responses in response to modified Igf signal-
ing among species. Given the critical role Igf signal-
ing plays in bone development and remodeling, and
the dramatic overexpression of these two Igf binding
proteins in the scale-biter, this is an obvious candi-
date for further study.

Cytokine and Chemokine signaling
Our observation that multiple cytokine/chemokine-re-
lated signaling molecules are differentially expressed
among species of pupfishes is interesting because it pro-
vides a potential link between the cellular inflammation
response and bone homeostasis such as occurs during
pathologies like osteoporosis [88]. In our dataset, genes
linked to inflammation included tumor necrosis factor
family members, cytokines, interleukins and other im-
mune cell stimulatory molecules, as well as inflamma-
tion activated intracellular molecules such as a number
of Nod-like receptor paralogs (Tables 1, 2, 3 and 4;
Additional file 1: Tables S2-S26).
In addition to roles in immune function and inflam-

mation, cytokine signaling plays a critical role during
non-pathological bone homeostasis [54]. Tumor necrosis
factor and interleukin molecules mediate signaling
among osteoblasts and osteoclasts, and play established
roles affecting osteoclast differentiation and functioning
[54, 88, 89]. We found many cytokine genes to be DE at
48 and 96 hpf, prior to bone formation, perhaps suggest-
ing modifications to osteoclast differentiation. Our data
further showed that a number of genes expressed by os-
teoclasts including calcitonin receptors (calcr and calcrl)
and tartrate resistant acid phosphatase (acp5) tended to
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be overexpressed in the scale-biter further lending sup-
port to the idea that either osteoclast number or func-
tioning may vary among species of pupfishes. The
central role osteoclasts play in bone remodeling makes
this an intriguing new avenue for research.
Studies of transcriptomic responses to bone loading

following exercise have also implicated a dominant role
for cytokine signaling in bone homeostasis [61, 74, 90].
Many of the genes identified as differentially expressed
in our dataset are orthologs and gene family members of
genes that have also been found to be differentially
expressed in the pharyngeal jaws of adult cichlid fishes
feeding on hard-shelled prey or soft food, and in the
bones of adult mice undergoing bone remodeling follow-
ing exercise [61, 74, 91]. Thus, differential expression of
a number of cytokine signaling genes among pupfishes
might suggest a connection between the cellular mecha-
nisms of developmental plasticity and the cellular
mechanisms underlying evolutionary divergence.

Constitutive differential expression of genes
Careful consideration of developmental stage is commonly
believed to be critical for identifying modifications to gene
expression associated with phenotypic change. This can
provide a dilemma for researchers deciding how fine to
sample across development (a concern especially relevant
to research on non-model genetic organisms since
samples are often relatively labor intensive to obtain). An
alternative model considers that once a gene is expressed
in an organ, it may continue to be expressed in that organ
for a long period of time (e.g. constitutive expression). We
investigated this by identifying genes DE at more than one
stage and found that while approximately 80% of the
genes in the intersection sets were DE at only a single
stage, a sizeable percentage of genes (~20%) tended to-
wards being over- or under-expressed in either the scale-
biter or durophage at multiple stages (Fig. 6).
Periods between our sampling stages were as few as

two days and as much as a week. We reasoned,
therefore, that when a gene was differentially
expressed at more than one stage, this was good evi-
dence that that gene was differentially expressed
among species for a long block of time. We refer to
these genes as constitutively differentially expressed
genes since they followed a pattern of being over- or
underexpressed among species through embryogenesis
and juvenile growth. The presence of these constitu-
tively DE genes would suggest that in some instances
fine sampling of developmental time may be unneces-
sary to identify a non-negligible percentage of genes
as DE. Furthermore, the true percentage of constitu-
tively differentially expressed genes is almost certainly
higher than what we report here since we highlight in
this paper patterns from only those genes that

appeared in two or more of our intersection sets, but
we noted that many additional genes also showed this
pattern of constitutive expression in our dataset. We
suspect that this pattern of constitutive differential
expression may be a dominant pattern for many of
the genes identified by us to be differentially
expressed among closely related pupfish taxa.
We want to stress that while many genes appear to be

constitutively differentially expressed, a much greater
percentage (~80%) of genes were DE at only 1 or 2
stages. Gene expression is known to be dynamic during
embryonic development when body plans and organs
are being patterned. Thus different classes of genes may
be more or less likely to be constitutively differentially
expressed, and some genes, DE at only a single stage,
may be evolutionarily important.

Other traits
The pupfishes in this study differ not only in jaw morph-
ology, but also traits such as behavior and coloration
[12, 13, 92, 93]. Undoubtedly some of the transcriptional
differences that we identified are related to these and
other traits. For example, GSEA identified enrichment of
neuronal pathways at embryonic stages (and presump-
tive brain tissue was necessarily included in these early
embryonic samples) highlighting to us that not every ex-
pression difference we identify is related to jaw morph-
ology. Determining which genes are related to jaw
morphology, however, is complicated by interactions
among different tissues. For instance, signaling centers
located in the developing brain are known to play a role
in craniofacial development [16].
As a further example, the inland species differ dra-

matically in coloration in both wild and laboratory
conditions. Adult male scale-biters are uniformly
black, while durophage males and females have a
milky white body coloration. Vertebrate jaws and pig-
ment cells both develop from migratory neural crest
cells, and two genes differentially expressed in our
data, endothelin receptor b (ednrb) and macrophage
colony stimulating factor 1 (csf1b), are implicated to
affect both jaw/bone development and melanophore
number in zebrafish [59, 94]. All three pupfishes have
melanophore cells (black) and leucophore cells
(white), but whether these coloration differences re-
sult from changes to cell number, distribution, or by
some other mechanism is unknown. These same
genes may or may not play a role in color differences
among species of pupfishes (or jaws for that matter);
we mention these only to emphasize that some tran-
scriptional variation in our dataset may affect traits
other than jaws or have pleiotropic effects on
multiple traits that differ among pupfishes.
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Conclusions
We used RNA-seq to identify differentially expressed
genes that may affect jaw development in pupfishes. Our
data indicated that a number of molecules related to cell
proliferation and differentiation, growth, bone develop-
ment, and craniofacial form were differentially expressed
prior to the appearance of morphological differences
among species. In particular we identified a number of
growth factor genes that are strong candidates for future
research into the origins of jaw diversity in this group.
Our findings are concordant with recent work in birds,

fishes, and mammals that have shown diverse mecha-
nisms contributing to skull variation in different clades
[11, 19, 20, 26–28, 95]. For complex traits such as skull
morphology, what we really want to know is how the
evolutionary tinkering of conserved developmental pro-
cesses can produce macroevolutionary patterns of
phenotypic diversity. Our data have identified a number
of genes that play roles in modifying conserved develop-
mental processes during skull development. Future work
linking modifications of gene expression as shown here
with changes in cellular-developmental processes such
as cell proliferation, apoptosis, and differentiation will
provide further insight into how a complex trait such as
the vertebrate skull is modified during the early stages of
speciation and ecological differentiation.
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(DOCX 131 kb)

Additional file 2: Figure S1. Phylogenetic relationships among San
Salvador Island Cyprinodon taxa. Shown are maximum likelihood
phylogenies built using RAxML under either a k-means partitioning
scheme implemented by Partition Finder or a single partition scheme
[49], and by applying either a GTRGAMMA or GTRCAT model. Note
the general overall congruence across trees built using different
assumptions, and that in each case the ML tree identifies the marine
omnivore as and outgroup to a monophyletic San Salvador clade.
(PDF 115 kb)

Additional file 3: Figure S2. Heatmap of sample by sample
correlations (Pearson’s r) shows both (1) dramatic differences in gene
expression among stages and (2) that samples are highly correlated
within each stage. Dendrogram represents hierarchical clustering tree of
samples at all four stages based on log2 transformed RPKM gene
expression values. Note the four major clusters corresponding to stage
that appear as blocks of high correlation (red) in the heatmap. The
dendrogram tips are colored by taxa showing that within each stage
samples cluster by taxa. Durophage = red, Inland omnivore = blue,
Marine omnivore = green, Scale-biter = purple. (PDF 2400 kb)

Additional file 4: Figure S3. Principal component plots show
separation of taxa by gene expression along the first 3–4 PC axes. Shown
are the first 3 (48 hpf) or 4 (96 hpf, 8 dpf, 15 dpf) PC axes for each stage.
Note how different PC axes separate taxa. For instance at 96 hpf PC2
largely distinguishes the scale-biter samples from the other taxa, while
PC4 largely distinguishes the durophage and inland omnivore samples.
(PDF 175 kb)

Additional file 5: Table S2. GSEA results for Hallmark gene sets
along PC axes at each stage. Excel table provides results from GSEA

enrichment analysis for Hallmark gene sets along PC axes at each
stage. Genes were pre-ranked by loadings on each axis prior to
analysis. Human gene identifiers were used, and genes without an
identifiable human ortholog were excluded from analysis. (XLS 98 kb)

Additional file 6: Table S3. GSEA results for Canonical Pathways gene
sets along PC axes at each stage. Excel table provides results from GSEA
enrichment analysis for Canonical Pathways gene sets along PC axes at
each stage. Genes were pre-ranked by loadings on each axis prior to
analysis. Human gene identifiers were used, and genes without an
identifiable human ortholog were excluded from analysis. (XLS 552 kb)

Additional file 7: Table S4. GSEA results for Hallmark gene sets for
genes over- or underexpressed in the scale-biter. Excel table provides
results from GSEA enrichment analysis for Hallmark gene sets in genes
differentially expressed in the scale-biter. Genes were pre-ranked by logFC
in the scale-biter relative to all other taxa. Human gene identifiers were
used, and genes without an identifiable human ortholog were excluded
from analysis. (XLS 49 kb)

Additional file 8: Table S5. GSEA results for Hallmark gene sets for
genes over- or underexpressed in the durophage. Excel table provides
results from GSEA enrichment analysis for Hallmark gene sets in genes
differentially expressed in the durophage. Genes were pre-ranked by
logFC in the scale-biter relative to all other taxa. Human gene identifiers
were used, and genes without an identifiable human ortholog were
excluded from analysis. (XLS 49 kb)

Additional file 9: Table S6. GSEA results for Canonical Pathways gene
sets for genes over- or underexpressed in the scale-biter. Excel table
provides results from GSEA enrichment analysis for Canonical Pathways
gene sets in genes differentially expressed in the scale-biter. Genes were
pre-ranked by logFC in the scale-biter relative to all other taxa. Human
gene identifiers were used, and genes without an identifiable human
ortholog were excluded from analysis. (XLS 162 kb)

Additional file 10: Table S7. GSEA results for Canonical Pathways gene
sets for genes over- or underexpressed in the durophage. Excel table
provides results from GSEA enrichment analysis for Canonical Pathways
gene sets in genes differentially expressed in the durophage. Genes were
pre-ranked by logFC in the scale-biter relative to all other taxa. Human
gene identifiers were used, and genes without an identifiable human
ortholog were excluded from analysis. (XLS 105 kb)

Additional file 11: Figure S4. Identification of Intersection Sets. Venn
diagrams showing the selection of intersection sets of genes differentially
expressed in either the scale-biter (C. desquamator) or durophage (C.
brontotheroides) at each stage. Numbers correspond to the number of
genes in each set. Genes in the middle region are differentially expressed
in all comparisons and are considered the intersection set of genes most
likely to contribute to the derived skull morphology of the scale-biter and
durophage respectively. (PDF 446 kb)

Additional file 12: Figure S5. Histograms of log2 fold change values
for genes differentially expressed (FDR ≤ 0.1) at 48 hpf. Histograms
of log2 fold change values for genes differentially expressed
(FDR ≤ 0.1) at 48 hpf in all pairwise comparisons. Most genes are
differentially expressed by 1.2–1.5 fold difference, with a much
smaller number of genes DE by greater than 1.5 fold indicating a
modest change to the magnitude at which most genes are DE.
Insets highlight genes differentially expressed at log2 fold change
less than 2. (PDF 271 kb)

Additional file 13: Figure S6. Histograms of log2 fold change values
for genes differentially expressed (FDR ≤ 0.1) at 96 hpf. Histograms
of log2 fold change values for genes differentially expressed
(FDR ≤ 0.1) at 96 hpf in all pairwise comparisons. Most genes are
differentially expressed by 1.2–1.5 fold difference, with a much
smaller number of genes DE by greater than 1.5 fold indicating a
modest change to the magnitude at which most genes are DE.
Insets highlight genes differentially expressed at log2 fold change
less than 2. (PDF 273 kb)

Additional file 14: Figure S7. Histograms of log2 fold change values
for genes differentially expressed (FDR ≤ 0.1) at 8 dpf. Histograms of log2
fold change values for genes differentially expressed (FDR ≤ 0.1) at 8 dpf
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in all pairwise comparisons. Most genes are differentially expressed by
1.2–1.5 fold difference, with a much smaller number of genes DE by
greater than 1.5 fold indicating a modest change to the magnitude at
which most genes are DE. But compare to embryonic stages 48 hpf and 96
hpf there are many more genes DE by greater than 1.5 fold. Insets highlight
genes differentially expressed at log2 fold change less than 2. (PDF 271 kb)

Additional file 15: Figure S8. Histograms of log2 fold change values
for genes differentially expressed (FDR ≤ 0.1) at 15 dpf. Histograms of
log2 fold change values for genes differentially expressed (FDR ≤ 0.1) at
15 dpf in all pairwise comparisons. Most genes are differentially
expressed by 1.2–1.5 fold difference, with a much smaller number of
genes DE by greater than 1.5 fold indicating a modest change to the
magnitude at which most genes are DE. But compare to embryonic
stages 48 hpf and 96 hpf there are many more genes DE by greater than
1.5 fold. Insets highlight genes differentially expressed at log2 fold
change less than 2. (PDF 265 kb)

Additional file 16: Figure S9. Heatmap of genes in both the scale-biter
and durophage intersection sets. Differentially expressed genes are over- or
underexpressed in a single taxon. Shown are heatmaps of all genes in both
the scale-biter and durophage intersection sets at 48 hpf (A) and at 96 hpf,
8 dpf, and 15 dpf (B). Note how the data fall into four main clusters at each
stage that are easily visualized by eye corresponding to genes over or
underexpressed in either the scale-biter or durophage respectively. In
contrast, genes are not typically differentially expressed in both the
scale-biter and durophage taxa. For instance, the plot in A shows genes
overexpressed in the scale-biter, and note that these same genes are
similarly expressed among the other three taxa. (PDF 12001 kb)

Additional file 17: Table S8. Genes in scale-biter intersection set at 48
hpf. This is a comma separated table of the genes in the 48 hpf scale-
biter intersection set. Given are edgeR results for each pairwise compari-
son. Columns indicating whether a gene is included in the intersection
set at a threshold of 1.5 or 2 fold are provided. (CSV 143 kb)

Additional file 18: Table S9. Genes in scale-biter intersection set at 96
hpf. This is a comma separated table of the genes in the 96 hpf scale-biter
intersection set. Given are edgeR results for each pairwise comparison.
Columns indicating whether a gene is included in the intersection set at a
threshold of 1.5 or 2 fold are provided. (CSV 65 kb)

Additional file 19: Table S10. Genes in scale-biter intersection set at 8
dpf. This is a comma separated table of the genes in the 8 dpf scale-biter
intersection set. Given are edgeR results for each pairwise comparison.
Columns indicating whether a gene is included in the intersection set at
a threshold of 1.5 or 2 fold are provided. (CSV 48 kb)

Additional file 20: Table S11. Genes in scale-biter intersection set at 15
dpf. This is a comma separated table of the genes in the 15 dpf scale-biter
intersection set. Given are edgeR results for each pairwise comparison.
Columns indicating whether a gene is included in the intersection set at a
threshold of 1.5 or 2 fold are provided. (CSV 91 kb)

Additional file 21: Table S12 Genes in durophage intersection set at
48 hpf. This is a comma separated table of the genes in the 48 hpf
durophage intersection set. Given are edgeR results for each pairwise
comparison. Columns indicating whether a gene is included in the
intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 76 kb)

Additional file 22: Table S13. Genes in durophage intersection set at
96 hpf. This is a comma separated table of the genes in the 96 hpf
durophage intersection set. Given are edgeR results for each pairwise
comparison. Columns indicating whether a gene is included in the
intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 26 kb)

Additional file 23: Table S14. Genes in durophage intersection set at 8
dpf. This is a comma separated table of the genes in the 8 dpf
durophage intersection set. Given are edgeR results for each pairwise
comparison. Columns indicating whether a gene is included in the
intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 22 kb)

Additional file 24: Table S15. Genes in durophage intersection set at
15 dpf. This is a comma separated table of the genes in the 15 dpf
durophage intersection set. Given are edgeR results for each pairwise
comparison. Columns indicating whether a gene is included in the
intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb)

Additional file 25: Table S16. GOstats results for scale-biter intersection
set. This is an excel table of providing GOstats overrepresentation
enrichment analysis results for each of the 4 scale-biter intersection sets.
(XLS 87 kb)

Additional file 26: Table S17. GOstats results for durophage
intersection set. This is an excel table of providing GOstats
overrepresentation enrichment analysis results for each of the 4
durophage intersection sets. (XLS 53 kb)

Additional file 27: Table S18. WebGestalt results for scale-biter intersection
set. This is an excel table of providing WebGestalt overrepresentation
enrichment analysis results for each of the 4 scale-biter intersection sets. Human
symbols were used for analysis and genes without orthology assignment were
excluded. (XLS 74 kb)

Additional file 28: Table S19. WebGestalt results for durophage
intersection set. This is an excel table of providing WebGestalt
overrepresentation enrichment analysis results for each of the 4
durophage intersection sets. Human symbols were used for analysis and
genes without orthology assignment were excluded. (XLS 66 kb)

Additional file 29: Table S20. DAVID results for scale-biter intersection
set. This is an excel table of providing DAVID overrepresentation enrichment
analysis results for each of the 4 scale-biter intersection sets. ZFIN ids were
used for analysis and genes without orthology assignment were excluded.
(XLS 164 kb)

Additional file 30: Table S21. DAVID results for durophage
intersection set. This is an excel table of providing DAVID
overrepresentation enrichment analysis results for each of the 4
durophage intersection sets. ZFIN ids were used for analysis and genes
without orthology assignment were excluded. (XLS 90 kb)

Additional file 31: Table S22. edgeR results table for identification of
DE genes. This is a tab delimited table of the results from pair-wise
comparisons among taxa at each stage to test for differential expression
of genes using edgeR. GLM models were built for each stage and TMM
normalization was calculated and applied at each stage. Genes filtered in
a given stage are represented by NA. (GZ 10772 kb)
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fertilization; GLM: Generalized linear model; GSEA: Gene set enrichment
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fertilization; LogFC: Logarithimic (base 2) fold-change; MGI: Mouse Genome
Informatics Database; ML: Maximum likelihood; PC: Principal component;
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(salinity); ZFIN: Zebrafish Model Organism Database
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