689 research outputs found
Ferrule-top nanoindenter: An optomechanical fiber sensor for nanoindentation
Ferrule-top probes are self-aligned all-optical devices obtained by fabricating a cantilever on the top of a ferruled optical fiber. This approach has been proven to provide a new platform for the realization of small footprint atomic force microscopes (AFMs) that adapt well to utilization outside specialized laboratories [D. Chavan, Rev. Sci. Instrum. 81, 123702 (2010)10.1063/1.3516044; D. Chavan, Rev. Sci. Instrum. 82, 046107 (2011)10.1063/1.3579496]. In this paper we now show that ferrule-top cantilevers can be also used to develop nanoindenters. Our instrument combines the sensitivity of commercial AFM-based indentation with the ease-of-use of more macroscopic instrumented indenters available today on the market. Furthermore, the all-optical design allows smooth operations also in liquids, where other devices are much more limited and often provide data that are difficult to interpret. This study may pave the way to the implementation of a new generation user-friendly nanoindenters for the measurement of the stiffness of samples in material sciences and medical research. © 2012 American Institute of Physics
The blazar-like radio structure of the TeV source IC310
Context. The radio galaxy IC310 in the Perseus cluster has recently been
detected in the gamma-ray regime at GeV and TeV energies. The TeV emission
shows time variability and an extraordinarily hard spectrum, even harder than
the spectrum of the similar nearby gamma-ray emitting radio galaxy M87.
Aims. High-resolution studies of the radio morphology help to constrain the
geometry of the jet on sub-pc scales and to find out where the high-energy
emission might come from.
Methods. We analyzed May 2011 VLBA data of IC310 at a wavelength of 3.6 cm,
revealing the parsec-scale radio structure of this source. We compared our
findings with more information available from contemporary single-dish flux
density measurements with the 100-m Effelsberg radio telescope.
Results. We have detected a one-sided core-jet structure with blazar-like,
beamed radio emission oriented along the same position angle as the kiloparsec
scale radio structure observed in the past by connected interferometers.
Doppler-boosting favoritism is consistent with an angle of theta < 38 degrees
between the jet axis and the line-of-sight, i.e., very likely within the
boundary dividing low-luminosity radio galaxies and BL Lac objects in unified
schemes.
Conclusions. The stability of the jet orientation from parsec to kiloparsec
scales in IC310 argues against its classification as a headtail radio galaxy;
i.e., there is no indication of an interaction with the intracluster medium
that would determine the direction of the tail. IC310 seems to represent a
low-luminosity FRI radio galaxy at a borderline angle to reveal its BL Lac-type
central engine.Comment: 5 pages, 3 figures (1 color); A&A, accepte
Hierarchical Structure Formation and Modes of Star Formation in Hickson Compact Group 31
The handful of low-mass, late-type galaxies that comprise Hickson Compact
Group 31 is in the midst of complex, ongoing gravitational interactions,
evocative of the process of hierarchical structure formation at higher
redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we
characterize the large population of <10 Myr old star clusters that suffuse the
system. From the colors and luminosities of the young star clusters, we find
that the galaxies in HCG 31 follow the same universal scaling relations as
actively star-forming galaxies in the local Universe despite the unusual
compact group environment. Furthermore, the specific frequency of the globular
cluster system is consistent with the low end of galaxies of comparable masses
locally. This, combined with the large mass of neutral hydrogen and tight
constraints on the amount of intragroup light, indicate that the group is
undergoing its first epoch of interaction-induced star formation. In both the
main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are
sensitive to the magnitude of disk turbulence, have both sizes and masses more
characteristic of z=1-2 galaxies. After subtracting the light from compact
sources, we find no evidence for an underlying old stellar population in F --
it appears to be a truly new structure. The low velocity dispersion of the
system components, available reservoir of HI, and current star formation rate
of ~10 solar masses per year, indicate that HCG31 is likely to both exhaust its
cold gas supply and merge within ~1 Gyr. We conclude that the end product will
be an isolated, X-ray-faint, low-mass elliptical.Comment: 24 pages, 14 figures (including low resolution versions of color
images), latex file prepared with emulateapj. Accepted for publication by the
Astronomical Journa
Fermi Observations of the Very Hard Gamma-ray Blazar PG 1553+113
We report the observations of PG 1553+113 during the first ~200 days of Fermi
Gamma-ray Space Telescope science operations, from 4 August 2008 to 22 February
2009 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in
the GeV gamma-ray regime and it allows us to fill a gap of three decades in
energy in its spectral energy distribution. We find PG 1553+113 to be a steady
source with a hard spectrum that is best fit by a simple power-law in the Fermi
energy band. We combine the Fermi data with archival radio, optical, X-ray and
very high energy (VHE) gamma-ray data to model its broadband spectral energy
distribution and find that a simple, one-zone synchrotron self-Compton model
provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all
sources detected in that regime and, out of those with significant detections
across the Fermi energy bandpass so far, the hardest spectrum in that energy
regime. Thus, it has the largest spectral break of any gamma-ray source studied
to date, which could be due to the absorption of the intrinsic gamma-ray
spectrum by the extragalactic background light (EBL). Assuming this to be the
case, we selected a model with a low level of EBL and used it to absorb the
power-law spectrum from PG 1553+113 measured with Fermi (200 MeV - 157 GeV) to
find the redshift which gave the best fit to the measured VHE data (90 GeV -
1.1 TeV) for this parameterisation of the EBL. We show that this redshift can
be considered an upper limit on the distance to PG 1553+113.Comment: Accepted for publication in the Astrophysical Journal (28 pages, 5
figures
Ambient-aware continuous care through semantic context dissemination
Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data.
Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability.
Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered.
Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps
The blazar 3C 454.3 underwent an unprecedented optical outburst in spring
2005. This was first followed by a mm and then by a cm radio outburst, which
peaked in February 2006. We report on follow-up observations by the WEBT to
study the multiwavelength emission in the post-outburst phase. XMM-Newton
observations on July and December 2006 added information on the X-ray and UV
fluxes. The source was in a faint state. The radio flux at the higher
frequencies showed a fast decreasing trend, which represents the tail of the
big radio outburst. It was followed by a quiescent state, common at all radio
frequencies. In contrast, moderate activity characterized the NIR and optical
light curves, with a progressive increase of the variability amplitude with
increasing wavelength. We ascribe this redder-when-brighter behaviour to the
presence of a "little blue bump" due to line emission from the broad line
region, which is clearly visible in the source SED during faint states.
Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV,
suggesting the existence of a "big blue bump" due to thermal emission from the
accretion disc. The X-ray spectra are well fitted with a power-law model with
photoelectric absorption, possibly larger than the Galactic one. However, the
comparison with previous X-ray observations would imply that the amount of
absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum
presents a curvature, which may depend on the X-ray brightness. In this case,
two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&
Bright AGN Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey
The first three months of sky-survey operation with the Fermi Gamma Ray Space
Telescope (Fermi) Large Area Telescope (LAT) reveals 132 bright sources at
|b|>10 deg with test statistic greater than 100 (corresponding to about 10
sigma). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicate
high-confidence associations of 106 of these sources with known AGNs. This
sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two
radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of
57 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 5 blazars with
uncertain classification. Four new blazars were discovered on the basis of the
LAT detections. Remarkably, the LBAS includes 10 high-energy peaked BL Lacs
(HBLs), sources which were so far hard to detect in the GeV range. Another 10
lower-confidence associations are found. Only thirty three of the sources, plus
two at |b|>10 deg, were previously detected with EGRET, probably due to the
variable nature of these sources. The analysis of the gamma-ray properties of
the LBAS sources reveals that the average GeV spectra of BL Lac objects are
significantly harder than the spectra of FSRQs. No significant correlation
between radio and peak gamma-ray fluxes is observed. Blazar log N - log S and
luminosity functions are constructed to investigate the evolution of the
different blazar classes, with positive evolution indicated for FSRQs but none
for BLLacs. The contribution of LAT-blazars to the total extragalactic
gamma-ray intensity is estimated.Comment: Submitted to ApJ. Not yet refereed. 61 pages, 26 figure
Using graph transformation algorithms to generate natural language equivalents of icons expressing medical concepts
A graphical language addresses the need to communicate medical information in
a synthetic way. Medical concepts are expressed by icons conveying fast visual
information about patients' current state or about the known effects of drugs.
In order to increase the visual language's acceptance and usability, a natural
language generation interface is currently developed. In this context, this
paper describes the use of an informatics method ---graph transformation--- to
prepare data consisting of concepts in an OWL-DL ontology for use in a natural
language generation component. The OWL concept may be considered as a
star-shaped graph with a central node. The method transforms it into a graph
representing the deep semantic structure of a natural language phrase. This
work may be of future use in other contexts where ontology concepts have to be
mapped to half-formalized natural language expressions.Comment: Presented at the TSD 2014 conference: Text, Speech and Dialogue, 17th
international conference. Brno, Czech Republic, September 8-12, 2014. 10
pages, 7 figure
The Effectiveness of Telemedicine for Weight Management in the MOVE! Program
PURPOSE: To examine the effectiveness of videoconferencing technology for delivering comprehensive weight management treatment.METHODS: This retrospective cohort study was conducted by extraction of data from medical records for the years 2008-2010. The treatment included a series of 12 weekly MOVE!® classes delivered using videoconferencing. Data were extracted from the time of baseline weight to 1 year after baseline weight for the MOVE! participants (n = 60) and from a concurrent control group (n = 60) that did not participate in MOVE! treatment.FINDINGS: Results indicated that the MOVE! group lost weight while the control group gained weight, resulting in a mean difference between the groups of -5.5 ± 2.7 kg (95% CI = -8.0 to -3.0; P \u3c .0001).CONCLUSIONS: These results indicate that videoconferencing is an effective method to provide the MOVE! Weight Management Program to veterans. Weight loss was maintained for one year after baseline in the MOVE! group. This is very promising as weight re-gain is a common issue and these results support using videoconferencing for a long-term weight management treatment option
MOJAVE XIII. Parsec-Scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz
We present 1625 new 15 GHz (2 cm) VLBA images of 295 jets associated with active galactic nuclei (AGNs) from the MOJAVE and 2 cm VLBA surveys, spanning observations between 1994 Aug 31 and 2013 Aug 20. For 274 AGNs with at least 5 VLBA epochs, we have analyzed the kinematics of 961 individual bright features in their parsec-scale jets. A total of 122 of these jets have not been previously analyzed by the MOJAVE program. In the case of 451 jet features that had at least 10 epochs, we also examined their kinematics for possible accelerations. At least half of the well-sampled features have non-radial and/or accelerating trajectories, indicating that non-ballistic motion is common in AGN jets. Since it is impossible to extrapolate any accelerations that occurred before our monitoring period, we could only determine reliable ejection dates for ∼ 24% of those features that had significant proper motions. The distribution of maximum apparent jet speeds in all 295 AGNs measured by our program to date is peaked below 5c, with very few jets with apparent speeds above 30c. The fastest speed in our survey is ∼ 50c, measured in the jet of the quasar PKS 0805−07, and is indicative of a maximum jet Lorentz factor of ∼ 50 in the parent population. An envelope in the maximum jet speed versus redshift distribution of our sample provides additional evidence of this upper limit to the speeds of radio-emitting regions in parsec-scale AGN jets. The Fermi LAT-detected gamma-ray AGNs in our sample have, on average, higher jet speeds than non LAT-detected AGNs, indicating a strong correlation between pc-scale jet speed and gamma-ray Doppler boosting factor. We have identified 11 moderate-redshift (z 10c) that are strong candidates for future TeV gamma-ray detection. Of the five gamma-ray loud narrow-lined Seyfert I AGNs in our sample, three show highly superluminal jet motions, while the others have sub-luminal speeds. This indicates that some narrow-lined Seyfert I AGNs possess powerful jets with Lorentz factors in excess of 10, and viewing angles less than 10◦, consistent with those of typical BL Lac objects and flat-spectrum radio quasars
- …
