54 research outputs found

    A systematic map of research exploring the effect of greenspace on mental health

    Get PDF
    The past 35 years has seen an accumulation of empirical evidence suggesting a positive association between greenspace and mental health. Existing reviews of evidence are narrow in scope, and do not adequately represent the broad range of disciplines working in this field. This study is the first systematic map of studies investigating greenspace effects on mental health. A total of 6059 papers were screened for their relevance, 276 of which met inclusion criteria for the systematic map.The map revealed several methodological limitations hindering the practical applications of research findings to public health. Critically, the majority of studies used cross-sectional mental health data which makes causal inference about greenspace effects challenging. There are also few studies on the micro-features that make up greenspaces (i.e., their “quality”), with most focussing only on “quantity” effects on mental health. Moreover, few studies adopted a multi-scale approach, meaning there is little evidence about at which spatial scale(s) the relationship exists. A geographic gap in study location was also identified, with the majority of studies clustered in European countries and the USA.Future research should account for both human and ecological perspectives of “quality” using objective and repeatable measures, and consider the potential of scale-dependent greenspace effects to ensure that management of greenspace is compatible with wider scale biodiversity targets. To establish the greenspace and metal health relationship across a life course, studies should make better use of longitudinal data, as this enables stronger inferences to be made than more commonly used cross-sectional data

    A cross-regional analysis of red-backed shrike responses to agri-environmental schemes in Europe

    Get PDF
    Agri-Environmental Schemes (AES) are the main policy tool to counteract farmland biodiversity declines in Europe, but their biodiversity benefit varies across sites and is likely moderated by landscape context. Systematic monitoring of AES outcomes is lacking, and AES assessments are often based on field experiments encompassing one or few study sites. Spatial analysis methods encompassing broader areas are therefore crucial to better understand the context dependency of species' responses to AES. Here, we quantified red-backed shrike (Lanius collurio) occurrences in relation to AES adoption in three agricultural regions: Catalonia in Spain, the Mulde River Basin in Germany, and South Moravia in the Czech Republic. We used pre-collected biodiversity datasets, comprising structured and unstructured monitoring data, to compare empirical evidence across regions. Specifically, in each region we tested whether occurrence probability was positively related with the proportion of grassland-based AES, and whether this effect was stronger in simple compared to complex landscapes. We built Species Distribution Models using existing field observations of the red-backed shrike, which we related to topographic, climatic, and field-level land-use information complemented with remote sensing-derived land-cover data to map habitats outside agricultural fields. We found a positive relationship between AES area and occurrence probability of the red-backed shrike in all regions. In Catalonia, the relationship was stronger in structurally simpler landscapes, but we found little empirical support for similar landscape-moderated effects in South Moravia and the Mulde River Basin. Our results highlight the complexity of species' responses to management across different regional and landscape contexts, which needs to be considered in the design and spatial implementation of future conservation measures

    An analytical framework for spatially targeted management of natural capital

    Get PDF
    A major sustainability challenge is determining where to target management to enhance natural capital and the ecosystem services it provides. Achieving this understanding is difficult, given that the effects of most actions vary according to wider environmental conditions; and this context dependency is typically poorly understood. Here, we describe an analytical framework that helps meet this challenge by identifying both why and where management actions are most effective for enhancing natural capital across large geographic areas. We illustrate the framework’s generality by applying it to two examples for Britain: pond water quality and invasion of forests by rhododendron

    Historical data reveal contrasting habitat amount relationships with plant biodiversity

    Get PDF
    Assessing habitat loss effects on biodiversity is a major focus of ecological research. The relationship between habitat amount and biodiversity, postulated in the habitat amount hypothesis, is usually assessed at one point in time, which does not account for habitat loss as a temporal process. We examined habitat amount effects at two time periods, 1930s and 2010s, using plant data from three semi-natural habitats: calcareous grassland, heathland and broadleaved woodland, across Dorset, southern England. Woodlands, which changed little in area over the time period, showed minimal effects of habitat amount on species occurrence in both time periods. For grassland and heathland, which had undergone severe losses over the study period, we found the expected positive relationship in the 2010s, but the relationship was negative for these habitats in the 1930s. We explored possible reasons for this result. Total perimeter-to-area ratio (TPAR) showed positive effects in the 1930s for grassland and heathland, suggesting effects of habitat configuration, specifically edge. However, TPAR was highly correlated with habitat amount so this finding is speculative. One possible explanation for the relationships with habitat amount, and the change between the two periods could be the quality of the surrounding matrix. In the 1930s, the landscape was less intensified and was dominated by semi-natural habitats, whereas by the 2010s much had been converted to arable and intensive grasslands. We speculate that species could likely utilise the matrix to a greater degree in the 1930s compared with the 2010s when the matrix was more hostile, thereby decreasing the importance of habitat amount in the 1930s compared with the 2010s. These findings have important implications for conservation, as they show the importance of context (i.e. matrix quality) in determining the relationship between habitat amount and biodiversity

    A global database for metacommunity ecology, integrating species, traits, environment and space

    Get PDF
    The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; “CESTES”. Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology

    Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations.

    Get PDF
    Functional diversity (FD) is increasingly used as a metric to evaluate the impact of forest management strategies on ecosystem functioning. Management interventions that aim to maximise FD require knowledge of multiple environmental drivers of FD, which have not been studied to date in temperate coniferous production forests. We quantified the relative importance of abiotic (forest management) and biotic (ground vegetation community) drivers of carabid FD and trait distribution in 44 coniferous plantation forest stands across the UK. Carabid FD declined with canopy cover and carabid body length correlated negatively with the percentage of open semi-natural area surrounding a plot. We conclude that forest management could enhance carabid FD through initiatives that emulate natural disturbance regimes through gap creation. We found that neither functional nor taxonomic metrics of vegetation diversity correlated with carabid FD, suggesting that restoration of plant communities, a major goal of forest restoration efforts, will not necessarily enhance carabid FD in coniferous plantations

    A practical guide to cross-cultural and multi-sited data collection in the biological and behavioural sciences.

    Get PDF
    Researchers in the biological and behavioural sciences are increasingly conducting collaborative, multi-sited projects to address how phenomena vary across ecologies. These types of projects, however, pose additional workflow challenges beyond those typically encountered in single-sited projects. Through specific attention to cross-cultural research projects, we highlight four key aspects of multi-sited projects that must be considered during the design phase to ensure success: (1) project and team management; (2) protocol and instrument development; (3) data management and documentation; and (4) equitable and collaborative practices. Our recommendations are supported by examples from our experiences collaborating on the Evolutionary Demography of Religion project, a mixed-methods project collecting data across five countries in collaboration with research partners in each host country. To existing discourse, we contribute new recommendations around team and project management, introduce practical recommendations for exploring the validity of instruments through qualitative techniques during piloting, highlight the importance of good documentation at all steps of the project, and demonstrate how data management workflows can be strengthened through open science practices. While this project was rooted in cross-cultural human behavioural ecology and evolutionary anthropology, lessons learned from this project are applicable to multi-sited research across the biological and behavioural sciences
    • 

    corecore