135 research outputs found

    Simulation Modeling and Analysis of Coal Shipping Operations

    Get PDF
    Computer simulations are increasingly powerful and realistic models for complex real-world scenarios, and our project applies this technology to model a coal transportation case study. Given a baseline scenario of fourteen carriers transporting coal from three U.S. locations to four international locations, we optimize operations in terms of product flow, time required for shipments, and total operation costs. Implementing the case study\u27s factors into modular code, we introduce several potential changes to current operations and develop specific scenarios. Further, in analyzing these scenarios we test for robustness and sensitivity, by changing values such as demand and bad weather occurrences, and noting how well the model responds. We ultimately gain a better intuition of the factors at play, identify optimizations, and develop a more efficient configuration. Also, we note several areas of potential improvement and suggest several directions for future work. Finally, taking advantage of modern graphical software, we present the optimized scenario in an animated interface, including a 3D view of the model and real-time data charts. While delving into complex data to reach the desired results, our model is accessible to a broad audience and presents an intriguing glimpse into the future of computational modeling

    Vitamin B2 and Innovations in Improving Blood Safety

    Get PDF
    Although transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens persists. The application of vitamin B2 (riboflavin) and UV light to pathogen inactivation has several appealing factors. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. This photochemical-based method is effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the content and the efficacy of whole blood or blood component. This chapter gives an overview of the innovative technology for pathogen inactivation, the MirasolÂź pathogen reduction technology (PRT) System, based on riboflavin and UV light, summarizing the mechanism of action, toxicology profile, pathogen reduction performance and clinical efficacy of the process

    Proceedings of the Food and Drug Administration public workshop on pathogen reduction technologies for blood safety 2018 (Commentary, p. 3026)

    Get PDF
    On November 29, 2018, experts in the field of infectious diseases, pathogen reduction technologies (PRTs) and other participants from blood centers, academia, and industry gathered at the Food and Drug Administration (FDA) White Oak Campus in Silver Spring, Maryland, for a 2‐day public workshop entitled “Pathogen Reduction Technologies for Blood Safety.” The workshop opened with welcome remarks from Dr. Nicole Verdun, Director, Office of Blood Research and Review (OBRR), Center for Biologics Evaluation and Research (CBER), FDA, followed by introductory remarks from Dr. Peter Marks, Director, CBER, FDA. The first day of the workshop focused on blood‐borne infectious agents and their impact on blood safety, experiences of the American Red Cross, and other blood establishments in implementing FDA‐approved pathogen inactivation (PI) technology for plasma and platelets (PLTs) in the United States and novel PRTs under consideration for whole blood (WB) and red blood cells (RBCs). The second day opened with welcome remarks from Dr. Chintamani Atreya, Associate Director for Research, OBRR, CBER, FDA. The focus was on emerging innovations relevant to PRTs and potential alternatives to PRTs. The workshop concluded with remarks on insights for future research and development in this area for blood and blood product safety from infectious agents. A brief introduction of each session by the session moderator followed by a summary of the speaker presentation as submitted by the moderator and speaker are reported here

    Heavy fermions in high magnetic field

    Get PDF
    We give an overview on experimental studies performed in the last 25 years on heavy-fermion systems in high magnetic field. The properties of field-induced magnetic transitions in heavy-fermion materials close to a quantum antiferromagnetic-to-paramagnetic instability are presented. Effects of a high magnetic field to the Fermi surface, in particular the splitting of spin-up and spin-down bands, are also considered. Finally, we review on recent advances on the study of non-centrosymmetric compounds and ferromagnetic superconductors in a high magnetic field.Comment: 37 pages, 26 figures, Special Issue of the "Comptes Rendus de l'Acad\'emie des Sciences" on the Physics in High Magnetic Fiel

    Developmental exposures to common environmental contaminants, DEHP and lead, alter adult brain and blood hydroxymethylation in mice

    Get PDF
    Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects.Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5–7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15.Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood.Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects

    Positive and Negative Regulation of Gli Activity by Kif7 in the Zebrafish Embryo

    Get PDF
    Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome patients who are homozygous for loss of function KIF7 alleles

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems
    • 

    corecore