85 research outputs found

    Surgical Treatment of Annuloaortic Ectasia - Replace or Repair?

    Get PDF
    Background: Patients with annuloaortic ectasia may be surgically treated with modified Bentall or David I valve-sparing procedures. Here, we compared the long-term results of these procedures. Methods: A total of 181 patients with annuloaortic ectasia underwent modified Bentall (102 patients, Group 1) or David I (79 patients, Group 2) procedures from 1994 to 2015. Mean age was 62 ± 11 years in Group? 1? and 64? ± 16 years in Group 2. Group 1 patients were in poorer health, with a lower ejection fraction and higher functional class. Results: Early mortality was 3% in Group 1 and 2.5% in Group 2. Patients undergoing a modified Bentall procedure had a higher incidence of thromboembolism and hemorrhage, whereas those undergoing a David I procedure had a higher incidence of endocarditis. Actuarial survival was 70 ± 6% at 15 years in Group 1 and 84 ± 7% at 10 years in Group 2. Actuarial freedom from reoperation was 97 ± 2% at 15 years in Group 1 and 84 ± 7% at 10 years in Group 2. In Group 2, freedom from procedure-related reoperations was 98 ± 2% at 10 years. At last follow-up, no cases of moderate or severe aortic regurgitation were observed. Conclusions: The modified Bentall and David I procedures showed excellent early and late results. The modified Bentall procedure with a mechanical conduit was associated with thromboembolic and hemorrhagic complications, whereas the David I procedure was associated with unexplained occurrences of endocarditis. Thus, the David I procedure appears to be safe, reproducible, and capable of achieving stable aortic valve repair and is therefore our currently preferred solution for patients with annuloaortic ectasia. However, the much shorter follow-up for David I patients limits the strength of our comparison between the two techniques

    Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics

    Get PDF
    Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics.Comment: Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3 Figures, minor update to reference

    Exploring cosmic origins with CORE : Inflation

    Get PDF
    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10(-3) level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(-3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the f(NL)(local) <1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.Peer reviewe

    Red, straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure

    Get PDF
    We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses

    Exploring Cosmic Origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation havethe potential to answer some of the most fundamental questions of modernphysics and cosmology. In this paper, we list the requirements for a future CMBpolarisation survey addressing these scientific objectives, and discuss thedesign drivers of the CORE space mission proposed to ESA in answer to the "M5"call for a medium-sized mission. The rationale and options, and themethodologies used to assess the mission's performance, are of interest toother future CMB mission design studies. CORE is designed as a near-ultimateCMB polarisation mission which, for optimal complementarity with ground-basedobservations, will perform the observations that are known to be essential toCMB polarisation scienceand cannot be obtained by any other means than adedicated space mission

    Exploring cosmic origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology. In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the "M5" call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation scienceand cannot be obtained by any other means than a dedicated space mission.Comment: 79 pages, 14 figure
    • 

    corecore