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Abstract. Non-Gaussian (NG) statistics of the thermal Sunyaev-Zeldovich (tSZ) effect carry
significant information which is not contained in the power spectrum. Here, we perform a
joint Fisher analysis of the tSZ power spectrum and bispectrum to verify how much the full
bispectrum can contribute to improve parameter constraints. We go beyond similar studies
of this kind in several respects: first of all, we include the complete power spectrum and
bispectrum (auto- and cross-) covariance in the analysis, computing all NG contributions;
furthermore we consider a multi-component foreground scenario and model the effects of
component separation in the forecasts; finally, we consider an extended set of both cosmolog-
ical and intra-cluster medium parameters. We show that the tSZ bispectrum is very efficient
at breaking parameter degeneracies, making it able to produce even stronger cosmological
constraints than the tSZ power spectrum: e.g. the standard deviation on σ8 shrinks from
σPS(σ8) = 0.35 to σBS(σ8) = 0.065 when we consider a multi-parameter analysis. We find
that this is mostly due to the different response of separate triangle types (e.g. equilateral and
squeezed) to changes in model parameters. While weak, this shape dependence is clearly non-
negligible for cosmological parameters, and it is even stronger, as expected, for intra-cluster
medium parameters.
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1 Introduction

The thermal Sunyaev-Zeldovich (tSZ) effect [1, 2] [3, for a recent review] is a spectral dis-
tortion of the Cosmic Microwave Background (CMB), mostly generated in galaxy clusters by
inverse Compton scattering of CMB photons off hot electrons. The tSZ effect is a powerful
cosmological observable, mainly applied to the study of individual clusters, to build cluster
catalogues and to extract number count statistics. A complementary possibility consists in
the study of the tSZ angular power spectrum. After being originally discussed in [4], this ap-
proach has then been adopted as a powerful probe of the low-redshift Universe, to test both
the standard ΛCDM scenario [5, 6] and some extended models, which encompass primordial
non-Gaussianity, massive neutrinos and dark energy [7–11]. One of the advantages of the tSZ
power spectrum analysis is that it allows including also small, unresolved clusters, and it does
not require direct measurements of cluster masses.

As it has been argued long before the tSZ was routinely measured across the sky [12], it
is important to notice that the tSZ map is highly non-Gaussian, therefore only a part of the
available tSZ information is actually captured by the power spectrum. A natural question
which arises is therefore how much additional information can be extracted from higher order
statistics, starting with the bispectrum (i.e. the 3-point multipole correlation function).

An initial theoretical study of the tSZ bispectrum was performed in [13]. There, it
was pointed out that, besides having a different amplitude scaling with σ8, compared to
the power spectrum, the bispectrum signal also takes its main contributions from massive
clusters at low redshift. This makes the impact of astrophysical uncertainties smaller in the
bispectrum than in the power spectrum, since the latter has sizeable contribution from less-
well-understood, low-mass, high-redshift clusters. At the same time the tSZ skewness was
detected using Atacama Cosmology Telescope (ACT) data [14, 15], while an all-sky Compton-
y map, and subsequent measurements of both the skewness and the bispectrum were later
obtained by Planck [5, 6]. In both cases it was shown that the bispectrum could be used to
obtain significant constraints on σ8. A later study [16] combined cluster counts with power
spectrum and equilateral (all three `’s equal) bispectrum measurements, showing that the
bispectrum — even just by considering the small equilateral triangle subset — can play a
significant role in breaking (cosmological and astrophysical) parameter degeneracies. If, as
we will show, this is the case, the tSZ bispectrum would be an extremely valuable source of
information, especially in light of how difficult it is proving to understand the astrophysics
of halos and reconcile various measurement of gas parameters, particularly the hydro-static
mass bias bHSM [17–22].

These and other similar results clearly encourage further investigation. The aim of this
work is to explore how much extra-information is contained in the 3-point function, via a
detailed joint Fisher analysis of the tSZ power spectrum and bispectrum. Our main goal is
to make our forecasts as realistic and accurate as possible. For this purpose:

• We consider the entire bispectrum domain (not just specific triangles) and compute for
the first time the full tSZ bispectrum covariance, beyond the Gaussian approximation.
We therefore include all contributions in the bispectrum covariance, up to the connected
6-point correlator, and we will also account for correlations between the power spectrum
and the bispectrum.

• We extend our parameter space with respect to previous forecasts and analyses, in order
to model in greater detail the impact of uncertainties in the electron pressure profile.
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• We account for foreground contamination and model (in a simple way) the effects of
component separation, using Internal Linear Combination (ILC).

As we show in the following, our analysis reinforces the conclusion that the tSZ bispectrum
is a powerful observable to constrain cosmology, especially due to its efficiency in breaking
degeneracies between astrophysical and cosmological parameters, otherwise present in a power
spectrum-only analysis.

As a note to our previous statements, let us also stress here that the bispectrum does not
account for all the cosmological information which can be extracted from the NG component
of the tSZ map, since of course relevant contributions also come from higher order correlators.
As long as most of the information is captured by the amplitude — and not by the shape —
of different tSZ correlation functions, it was shown that the tSZ 1-point probability-density-
function is a near-optimal statistic to constrain cosmology, since it encodes information from
all n-point amplitudes (see [23] and references therein). The implementation of the 1-point
statistic in parameter inference is however work in progress at the moment, making bispectrum
estimation still a viable and worth pursuing alternative approach in practice. Moreover, we
will show in the remainder that, while indeed small, the tSZ bispectrum shape dependence
on cosmology is not negligible, and it actually plays an important role in breaking parameter
degeneracies; this argument becomes even stronger when we account for the shape dependence
on IntraCluster Medium (ICM) parameters.

The paper is structured as follows: in section 2 we review the halo model approach
applied to the theoretical calculation of tSZ n-point correlation function, we show our choice
of halo mass function and bias and we describe the analytical model of electron pressure
profile which we use in the analysis; in section 3 we illustrate the calculation of the full
covariance matrix for our observables; in section 4 we analyze the dependence of the tSZ
power spectrum and bispectrum on different cosmological and ICM parameters; in section 5
we discuss foreground contamination issues; in section 6 we describe in detail and comment
the results of our analysis. Finally, we summarize and draw our conclusions in section 7.

2 Theoretical tSZ correlation functions

The temperature fluctuations associated with the tSZ effect appear in sky maps as

∆T

T
(ν, n̂) = g(ν) y(n̂) , g(ν) ≡ x coth(x/2)− 4 , y(n̂) ≡

∫
σT
kB neTe

mec2
dr . (2.1)

Here g(ν) encapsulates the spectral dependence of the tSZ effect in units of CMB temperature
with x ≡ hν/(kBT ), while y, called the Compton-y parameter, is the tSZ intensity along the
line of sight n̂. σT is the Thomson cross section and me, ne and Te are respectively the
electron rest mass, number density and temperature.

The statistical properties of the y field can be extracted from its n-point angular corre-
lation functions that we predict using the halo model approach [24, for a review]. Under some
simplifying assumptions, discussed later, the expressions for all n-point correlators are well
known [4, 6, 13, 16, 25, 26]. They can be derived via the formalism detailed in appendix A,
where we express the y-polyspectra as the projection onto the past light-cone of the three-
dimensional correlators of the corresponding three-dimensional field. This formulation is very
useful in the mathematical derivation and numerical implementation of the general y field
n-point correlator.
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The tSZ power spectrum is given by the sum of the Poisson one-halo term, which account
for intra-halo correlations, and the two-halo term which models inter-halo correlations [7, 27].
They read

C1h
` =

∫
dz

d2V

dz dΩ

∫
dM

dn

dM
(z,M)|ỹ`(z, M̃)|2 , (2.2)

C2h
` =

∫
dz

d2V

dz dΩ
D2

+(z)Pm(k)

[ ∫
dM

dn

dM
(z,M)b(z,M)ỹ`(z, M̃)

]2∣∣∣∣
k=
(
`+1/2
χ(z)

). (2.3)

Here Pm(k) is the linear matter power spectrum, D+(z) is the growth factor, and d2V/ dz dΩ
is the comoving volume element per steradian, which can be calculated as d2V/ dz dΩ =
cχ2(z)/H(z), where χ(z) is the radial comoving distance. The Halo Mass Function (HMF)
dn
dM and halo bias b will be described in section 2.1. ỹ`(z,M) is the 2D Fourier transform of
the projected y parameter image of the halo defined in detail in section 2.2. Notice that in
eq. (2.2), (2.3), and throughout the paper we also consider a hydrostatic mass bias rescaling
the true mass of the halo, i.e., we use M̃ = (1−bHSM)M in the expression for the projected y.

Higher order correlators are a straightforward extension of the power spectrum. Through-
out this work, we will adopt the flat-sky approximation. Therefore, we will have to include
the reduced bispectrum in our NG analysis. The bispectrum is described by one-, two- and
three-halo terms. Including the three halo term would require the second order halo bias,
which is not provided in [28]. To overcome this shortcoming, one could in principle resort
to the peak-background-split formalism [29–32]; however, since the three-halo contribution is
negligible we just omit it here. The one- and two-halo terms read

b1h
`1`2`3 =

∫
dz

d2V

dz dΩ

∫
dM

dn

dM
(z,M)ỹ`1(z, M̃)ỹ`2(z, M̃)ỹ`3(z, M̃) , (2.4)

b2h
`1`2`3 =

[∫
dz

d2V

dz dΩ
D2

+(z)Pm(k)

∫
dM

dn

dM
(z,M)b(z,M)ỹ`2(z, M̃) ỹ`3(z, M̃)×

×
∫

dM
dn

dM
(z,M)b(z,M)ỹ`1(z, M̃)

∣∣∣∣
k=
(
`1+1/2
χ(z)

)
]

+ 2 permutations.

(2.5)

Finally, for the higher order correlators, we will always employ only the one-halo term, which
in general reads

P 1h
(n)(`1, . . . , `n) =

∫
dz

d2V

dz dΩ

∫
dM

dn

dM
(z,M)

∏
i

ỹ`i(z, M̃) . (2.6)

For later use, we point out that the general one-halo term does depend solely on the magni-
tudes of the multipoles involved.

Unless specified otherwise, in all the spectra we integrate over redshift between zmin =
10−6 and zmax = 4.5, and over masses betweenMmin = 1010M�h

−1 andMmax = 1016M�h
−1.

These limits, that stretch beyond the values commonly used in the literature, allow us to
ensure that even higher order correlators are integrated correctly. We integrate directly over
the overdensity massM500,c, as in, e.g., [6, 9], so that a conversion to the virial masses is never
required, and also assume that d lnM∆,c/d lnMvir ≈ 1 [9]. We use bHSM = 0.2 [6] as the
fiducial value throughout the analysis. We choose the values from [33] for the cosmological
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parameters h = 0.6711, nS = 0.9624, w0 = −1, but we pick Ωm = 0.28, σ8 = 0.8 to be in
agreement with [6].1

The fitting functions we employ, that we are about to describe, are the most commonly
used in the literature. A possible alternative, proposed in [35], would be to jointly fit both
the pressure profile and the HMF from simulations

2.1 Halo mass function

We use the HMF and bias from [28], converting the mass definition M500,c into M∆,m, to fit
the parameters of their table 4 to the appropriate value of ∆ = 500ρc/ρm.

dn

dM
= νf(ν)

ρ̄m
M

d ln(σ−1)

dM
, f(ν) = α

[
1 + (βν)−2φ

]
ν2ηe−γν

2/2 . (2.7)

We assume that the redshift scaling provided for ∆ = 200 applies to any ∆:

β = β0(1 + z)0.2 , φ = φ0(1 + z)−0.08 , η = η0(1 + z)0.27 , γ = γ0(1 + z)−0.01 , (2.8)

where the parameters at z = 0 are taken from table 4 of [28], using a linear interpolation
along ∆. As recommended, for each z > 3 we use the value calculated at z = 3, and at each
z we calculate α(z) imposing

∫
dνf(ν, z) b(ν, z) = 1 . At z = 0 we correctly recover the value

of α interpolated from the above mentioned table.
We use a halo bias of the form

b(ν) = 1−A νa

νa + δac
+Bνb + Cνc , (2.9)

with the parameters from table 2 of [28].

2.2 Electron pressure profile

In our analysis, we are interested in the projected two-dimensional Compton-y field, which is
obtained via line-of-sight integration of the rescaled electron density profile Pe, in any given
direction of the sky through

ỹ`(z,M) =
σT

mec2

4πrs
`2s

∫
dxx2 j0

(
`+ 1/2

`sχ(x)
x

)
Pe(x, z,M) . (2.10)

Here rs = rs(z,M) and `s = a(z)χ(z)/rs(z,M) are, respectively, the typical scale radius of
the y-image of the halo, and the multipole moment associated with it. For the parametrization
of the electron profile that we employ, given in [36], rs = r500 and, for a single cluster, Pe

relies on the generalised Navarro-Frenk-White profile

Pe (x, z,M500,c) =
C (x, z,M500,c)× P0

(c500x)γG [1 + (c500x)αG ]
γG−βG
αG

, x ≡ r

r500
, (2.11)

for which we use the best fit parameters obtained in [36]:2

{P0, c500, αG, γG, βG} =
{

8.403 h
−3/2
70 , 1.177, 0.3081, 1.0510, 5.4905

}
. (2.12)

1For consistency with [6], we do not use the updated parameter from [34].
2We use the non-self-similar profile derived in the main text (cf. their eq. (12)).

– 5 –



As we rely on the halo model for the description of matter clustering, r500 is the distance from
the center of the halo, delimiting a sphere containing a density of dark matter which is 500
times the critical density of the Universe ρc. The function C (x, z,M500,c) has the expression

C (x, z,M500,c) = 1.65 h2
70 E(z)

8
3

(
h70M500,c

3× 1014 M�

) 3
2

+αP+α′(x)

eV cm−3, (2.13)

where αP = 0.12, and the exponent α′P(x), also fitted in [36], has the following dependence

α′P(x) = 0.10− (αP + 0.10)

(
x

0.5

)3
1 +

(
x

0.5

)3 . (2.14)

These exponents parametrise deviation from the standard self-similar case. In eqs. (2.12)-
(2.13) we also introduced the widely used parameter h70 ≡ h/0.7.

3 Covariance matrix for the (binned) observables

In this work, we consider flat-sky binned estimators for the observables of interest as they are
smooth and slowly varying functions in multipole space. The bins are defined in harmonic
space: `′ ∈ `b if `−∆`b/2 ≤ `′ ≤ `+ ∆`b/2, ` being the central value of the bin `b of width
∆`b. As we are working in flat-sky, ` ∈ R2. We are also considering a survey observing a sky
fraction corresponding to a solid angle of Ωsky steradians. Similarly to the three-dimensional
matter field case, the binned angular power spectrum is defined as [37–39]

Ĉ`b ≡
∑
`∈`b

δ (`+ `′) ỹ` ỹ`′

ΩskyN(`b)
, (3.1)

where the sum runs over discrete modes which are integer multiples of the fundamental
frequency of our survey `f ≡ 2π/Θsky, Θsky being the survey linear angular size. We recall
that

Ωsky = 2π (1− cos Θsky) . (3.2)

The field ỹ` is the two-dimensional Fourier transform of the y field (2.1). The quantity
N(`b) ≈ 2`∆`bfsky (in the limit ` � `f ) gives the number of vector pairs ˆ̀,− ˆ̀ whose
magnitude ˆ̀ is within the bin `b, each pair being discriminated by a deviation in the module
of the vectors of a unit of the survey fundamental mode `f [40–42]. In a similar fashion to
the three-dimensional matter field case, we define the binned angular bispectrum as [42–46]

b̂`b1`b2`b3
≡
∑
`1∈`b1

∑
`2∈`b2

∑
`3∈`b3

δ(2)(`1 + `2 + `3) ỹ`1 ỹ`2 ỹ`3
ΩskyNtri.(`b1, `

b
2, `

b
3)

, (3.3)

where Ntri.(`
b
1, `

b
2, `

b
3) is the number of valid triplets (i.e. respecting the triangular delta) in

the proposed bin triplets [40–42]

Ntri.

(
`b1 , `

b
2 , `

b
3

)
≈

Ω2
sky `1 `2 `3 ∆`b1 ∆`b2 ∆`b3

2π3
√

2`21`
2
2 + 2`21`

2
3 + 2`22`

2
3 − `41 − `42 − `23

, (3.4)

where the approximation assumed is ∆`bi � `f . To speed up the calculations of the Fisher
matrix, we assume that the power spectrum and the bispectrum are constant in each bin `b,
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and can therefore be described by a single suitably picked representative ¯̀b.3 In practice, it
is possible to prove that the 2 estimators above are unbiased and 〈Ĉ`b〉 = C¯̀b and 〈b̂`b1`b2`b3〉 =
b¯̀b

1
¯̀b
2

¯̀b
3
. In the following we drop the bars to distinguish the bin from its representative, as

they should be distinguishable from the context. The representative considered in this work
will be the central magnitude value ¯̀b ≡ ` of the bin `b.

3.1 Structure of the covariance matrix

For our computation, we chose the binned estimators Ĉ`b (3.1) and b̂`1`2`3 (3.3) for which we
present the covariance matrix here below. We split the joint covariance as [47–50]

Cov
[
Ĉ`b , Ĉ`′b

]
= Cov [. . . ]Gauss + Cov [. . . ]NG , (3.5)

Cov
[
b̂`b1`b2`b3

, b̂
`
′b
1 `
′b
2 `
′b
3

]
= Cov [. . . ]Gauss + Cov [. . . ]NG , (3.6)

Cov
[
Ĉ`b , b̂`b1`b2`b3

]
= Cov [. . . ]NG . (3.7)

In eqs. (3.5) and (3.6), the subscript Gauss labels the covariance terms containing only 2-
point statistics, which are non-vanishing only for correlations within the same `−bin. The
other covariance terms arise due to the non-Gaussian statistics of the y field (2.1) and correlate
modes in different `−bins and the power spectrum and bispectrum. The derivation of the flat-
sky joint power spectrum-bispectrum covariance has already been outlined for other projected
scalar fields, such as the weak lensing convergence [42, 49]. As the derivation of the covariance
for the y field follows the same mathematical and conceptual steps, we refer to the above
cited works for more insights on its rigorous derivation. In the following, we report the final
expressions employed in the present work, along with the most important concepts associated
to their structure.

3.2 Power spectrum covariance matrix

Starting from the power spectrum binned estimator (3.1), we can obtain its full covariance
by applying the following standard definition

Cov
[
Ĉ`b , Ĉ`′b

]
= 〈Ĉ`bĈ`′b〉 − 〈Ĉ`b〉〈Ĉ`b〉 . (3.8)

A detailed calculation leads to a non-connected correlator of 4 instances of the field ỹ` which
can be split via Wick theorem into a sum of products of 2-point correlators and one 4-point
connected correlator. The former can be further simplified, leading to the following Gaussian
term

Cov
[
Ĉ`b , Ĉ`′b

]
Gauss

=
2δK
``′

N (`b)
(Cn.

` )2 , Cn.
` ≡ C` +N` . (3.9)

In eq. (3.9) we potentially account for sources of Gaussian noise via the associated power
spectrum N`. The 4-point connected component leads instead to the NG term in eq. (3.5)

Cov
[
Ĉ`b , Ĉ`′b

]
NG,T

≈ 1

Ωsky
T
(
`,−`, `′,−`′

)
, (3.10)

where T
(
`,−`, `′,−`′

)
is the trispectrum (A.13) of the tSZ field. In eq. (3.10) the exact

covariance evaluation would require an average of the trispectrum over the two bins `b, `′b

3We discuss and validate our choice of binning and bin representative in appendix D.
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Figure 1: Left) Full bispectrum covariance matrix. Right) Fractional amplitude of the
bispectrum covariance terms different from Cov

[
b̂`b1`b2`b3

, b̂
`
′b
1 `
′b
2 `
′b
3

]
NG,6P compared to the full

covariance. The white areas correspond to configurations for which the covariance is fully
determined by Cov

(6)
BB for which the plotted quantity is not defined. In both panels, the ticks

mark equilateral configurations with sides of the labelled length.

involving both angular and magnitude integrations. However, we work under the common
approximation of slowly varying polyspectra within the bins chosen for our work [42, 49]. We
therefore assumed the averaged trispectrum being the same as the trispectrum computed at
the central values of the bins.

3.3 Bispectrum covariance matrix

Similarly to the procedure outlined in the previous section, we can compute the covariance
matrix for the flat-sky bispectrum binned estimator (3.3), shown in figure 1, left panel. [42,
51, 52]. The Wick theorem allows us to derive the Gaussian part of the bispectrum covariance

Cov
[
b̂`b1`b2`b3

, b̂
`
′b
1 `
′b
2 `
′b
3

]
Gauss

=
Ωsky

Ntri.
(
`b1 , `

b
2 , `

b
3

)Cn.
`1C

n.
`2C

n.
`3

[
δK
`1`′1

(
δK
`2`′2

δK
`3`′3

+ δK
`2`′3

δK
`3`′2

)
+

+2 permutations of
(
`′1 ↔ `′2

)
+ 2 permutations of

(
`′1 ↔ `′3

)]
.

(3.11)

Meanwhile, the non-Gaussian (NG) components read

Cov
[
b̂`b1`b2`b3

, b̂
`
′b
1 `
′b
2 `
′b
3

]
NG,BB

=
2π

Ωsky
b`′1,`2,`3b`1,`′2,`′3

[
1

`1∆`b1

(
δK
`1`′1

+ δK
`1`′2

+ δK
`1`′3

)
+

+3 permutations of
(
`1 ↔ `2

)
+ 3 permutations of

(
`1 ↔ `3

)]
,

(3.12)
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Figure 2: Different components of the diagonal part for the tSZ power spectrum covariance
matrix. The impact of the Gaussian Planck-like noise is displayed through makers. All the
components are properly scaled for visualisation purpose.

Cov
[
b̂`b1`b2`b3

, b̂
`
′b
1 `
′b
2 `
′b
3

]
NG,PT

=
2π

Ωsky

Cn.
`1

`1∆`b1

[
T
(
`2, `3, `

′
2, `
′
3

)
δK
`1`′1

+ T
(
`2, `3, `

′
1, `
′
3

)
δK
`1`′2

+

+T
(
`2, `3, `

′
1, `
′
2

)
δK
`1`′3

]
+ 3 permutations of

(
`1 ↔ `2

)
+ 3 permutations of

(
`1 ↔ `3

)
.

(3.13)

By employing the estimator definitions, we can also obtain an expression for the cross-
covariance between the binned flat-sky observables used in our analyses

Cov
[
C`b , b̂`b1`b2`b3

]
NG,PB

=
4π

Ωsky

[
Cn.
` (`) b`,`2,`3
`1∆`b1

δK
``1 + 1 permutation of

(
`1 ↔ `2

)
+

+ 1 permutation of
(
`1 ↔ `3

)]
.

(3.14)

So far, all the equations listed in the present section are exact. The two terms still missing
are those associated to the 6- and 5-point correlator arising from the bispectrum covariance
and the cross-covariance calculation. In these cases, the spectra should be averaged over the
bins involved. However, as it was the case for the NG component of the power spectrum
covariance (3.10), we assume them to be almost constant over the bins thus avoiding this
computationally expensive operation. Therefore, the final expressions are

Cov
[
b̂`b1`b2`b3

, b̂
`
′b
1 `
′b
2 `
′b
3

]
NG,6P

≈ 1

Ωsky
P(6)

(
`1, `2, `3, `

′
1, `
′
2, `
′
3

)
, (3.15)

Cov
[
Ĉ`b , b̂`b1`b2`b3

]
NG,5P

≈ 1

Ωsky
P(5) (`,−`, `1, `2, `3) . (3.16)

In the right panel of figure 1 we show the fraction of the total covariance due to the
6-point connected term we just described, which is the dominant one: as shown in figure 2
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Figure 3: Selected components of the tSZ bispectrum covariance matrix. Whenever of
relevance, the impact of the Gaussian Planck-like noise is displayed through makers. In the
top panel we focus on equilateral configuration while in the bottom panel we focus on squeezed
configuration of type {∼ 22, `, `}. All the components are properly scaled for visualisation
purpose.

and 3, it is possible to identify a hierarchy among the different components listed above.
The Cov [. . . ]NG,T and the Cov [. . . ]NG,6P component dominating the power spectrum and
the bispectrum covariance, respectively, clearly emphasises the level of non-Gaussianities in
the tSZ field.
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4 Power spectrum and bispectrum dependence on the parameters

It is well known that varying cosmological and gas parameter results in an amplitude shift of
the power spectrum [e.g. 9, 53] and a slight tilt at smaller scales, where the power spectrum
has a stronger dependence on the shape of the halo profile. As a consequence, there are
important degeneracies among the various parameters and, both with current and future
data, one needs to consider additional observables to constrain various parameter jointly,
either exploiting other datasets [e.g. 53] or other statistics extracted from the same tSZ maps
[16].

Overall, also the bispectrum displays a similar dependence on different parameters, lead-
ing again to an amplitude shift as the main effect. This comes from the fact that tSZ corre-
lators are dominated by the one-halo term, making the overall tSZ statistic nearly Poisson.
However, for the bispectrum we can also appreciate a non-negligible, configuration dependent
modulation, which differs for varying parameters.

Let us start from considering the bispectrum derivatives for the equilateral (`1 = `2 = `3)
and “squeezed” configurations (`1 ≈ 22, `2 = `3), and compare them to their power spectrum
counterparts in figure 4.4 Much like the power spectrum, the derivatives of the equilateral
bispectrum are similar to each other, most of them being somewhat flat up to ` ≈ 103 where
the halo inner structure starts to be resolved, with a subsequent reduction (in absolute value)
on smaller scales. On the other hand, the derivatives of the squeezed bispectrum have a
slightly more variegated phenomenology among themselves and, on top of that, they differ
from the equilateral bispectrum ones. For this reason we can intuitively expect squeezed
configurations to be less affected by parameter degeneracies. While in section 6.1.1 we will
confirm this expectation, we will also find that the conditional errors will be much bigger to
begin with than what we find using only equilateral configurations, further motivating the
analysis of the full bispectrum. Using the bispectrum parametrization introduced in [54],

P ≡ `1 + `2 + `3 , F ≡ 32(σ̃2 − σ̃3)

3
+ 1 , S ≡ σ̃3 ,

σ̃2 ≡ 12
(`1`2 + `1`3 + `2`3)

(`1 + `2 + `3)2
− 3 , σ̃3 ≡ 27

`1`2`3
(`1 + `2 + `3)3

,
(4.1)

in figure 5 we show how each configuration responds to parameter changes in a slightly
different manner. Even though each one has lower significance than the power spectrum,
this means that it is easier to discern the effects of the various parameter changes. We will
quantify this statement in section 6. The reason why different bispectrum configurations
respond differently to changes in the various parameters lies in the slightly different ranges
of halo masses and redshifts that contribute the most to the specific configuration. This is
investigated in appendix E.

5 Gaussian experimental noise and foregrounds

To assess the impact of instrumental noise and foregrounds on the forecast we employ the
methodology of [7, 12]. We assume to use multi-channel measurements to run a simple internal
linear combination (ILC) to separate foregrounds from the signal. To do so, we will assume
perfect knowledge of the foreground spectral energy densities, which might be unrealistic in

4We do not add the further requirement `2,3 � `1, so not all the configurations in the squeezed set are
technically “squeezed”.
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Figure 4: Left and central column) logarithmic derivative of the power spectrum (red solid
line) and of the bispectrum (dark blue line) with respect to different parameters of interest.
Whenever the bispectrum is considered, we show equilateral configurations (solid line) and
squeezed configurations of kind {∼ 22, `, `} (dotted line). The parameters with respect to
which the derivatives are taken are: βG (top-left panel), h (top-central panel), σ8 (bottom-left
panel) and Ωm (bottom central panel). Right column) fractional difference between the two
derivatives on the left (per row). Color and line style code is the same as above.

a real life scenario [55–57]. We leave the assessment of the impact of more refined foreground
modelling to future work.

5.1 Spectral components

A comprehensive list of the spectral components that affect tSZ measurements is given by
instrumental noise, CMB, free-free, thermal dust, synchrotron, radio point sources, infrared
point sources. We will consider all of these contributions even if we use approximate descrip-
tions that are anyway commonly used in the literature.

We assume we can factorize the inter-frequency correlation in three ingredients: the
spectral energy density expressed with respect to the CMB black-body Θsc(ν), a spectral
coherence factor that parametrize the correlation between different instrumental frequency
channels R(νi, νj , ξ

sc), and an angular scaling Csc
` :

Csc(νi, νj) = Θsc(νi)Θ
sc(νj)R(νi, νj , ξ

sc)Csc
` . (5.1)
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Figure 5: Logarithmic derivative of the bispectrum with respect to Ωm (top), σ8 (middle),
and αP (bottom). On the right we also provide a rescaled plot for the perimeter value of P =
8130 to illustrate the differences in derivatives for different triangles.

In [58] the spectral coherence in two channels νi and νj , for each component, was parametrized
as

R(νi, νj , ξ
sc) = exp

[
−1

2

(
log(νi)− log(νj)

ξsc

)2
]
, ξsc ≈ 1√

2∆αsc
, (5.2)

where, for each spectral component, ∆αsc is the variance of the spectral index over the sky.
Depending on the spectral component, ξsc varies in the range [0,∞). In particular, we assume
the instrument frequency channels to be independent (ξsc → 0), and notice that the CMB
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has perfect correlation across all the frequencies (ξsc →∞).
Θsc, ∆αsc, and Csc

` vary for each spectral component. We will use the values and
functional forms provided in [7, 56, 58, 59], that we report in appendix B.

5.2 Component separation

The ILC aims at recovering, multipole by multipole, a signal of known spectral dependence
computing a weighted average of data collected at different frequencies.5 The weights are cal-
culated in such a way to have unitary response to the desired spectral shape, while minimizing
spurious contributions from other spectral components.

The internal linear combination weights and the effective noise term after multifrequency
subtraction are respectively [12]

~w =
[
∑

scC
sc(νi, νj)]

−1 ~g

~g · [
∑

scC
sc(νi, νj)]

−1 ~g
, N = ~g ·

[∑
sc
Csc(νi, νj)

]−1
~g . (5.3)

where ~g = (g(ν1), · · · , g(ν1))T is a vector of the value of the tSZ spectral shape evaluated on
the observed channels. This result, valid for a single multipolar coefficient, for each ` can be
averaged over all m: we can therefore express the effective noise term N` = N/(2`+ 1).6

6 Forecast results

We now have all the ingredients to understand what is the information content of the power
spectrum, of the full bispectrum, and of their combination. We use a Fisher forecast to
estimate how well a particular experiment can constrain a parameter through some observed
quantity. The components of the Fisher information matrix are defined as [60]:

Fij =

〈
−∂

2(lnL)

∂θi ∂θj

〉
, (6.1)

where L is the likelihood function and the θi are the parameters we want to constrain.
In case of Gaussian distributed data and rotational invariance of the observable, the

Fisher matrix can also be written as [61]:

Fij =
∂O
∂θi

T

Cov−1 ∂O
∂θj

+
1

2
Tr

[
Cov−1 ∂ Cov

∂θi
Cov−1 ∂ Cov

∂θj

]
(6.2)

where Cov = Cov[O,O] is the covariance matrix, described in section 3. We drop the second
term as all the relevant information is contained in the mean of the observable, while the
covariance dependence on the parameters would introduce spurious information that cannot
be extracted by the considered estimator [61]. In principle neither the power spectrum nor
the bispectrum follow a Gaussian distribution, but we expect it to be a good approximation
for the binned spectra in virtue of the central limit theorem. This ansatz should however be
validated against simulations or more refined analysis [62, 63] that we leave for future work.

For each parameter the conditional error is:

σi, conditional =
1√
Fii

, (6.3)

5All quantities in this section (except N`) are calculated separately for each (`,m).
6As a sanity check we successfully reproduced figure 12 of [7]. To do so one has to use N sc

` = ~w · Csc ~w,
where the ~w are still calculated according to eq. (5.3).
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Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.0021 0.0092 0.0015 8.1 0.12 0.092
h 0.013 0.033 0.010 16 0.36 0.34
σ8 0.0020 0.0075 0.0015 3.4 0.047 0.047
nS 0.060 0.060 0.051 8.0 0.43 0.30
w0 0.096 0.31 0.071 105 0.59 0.54
bHSM 0.0060 0.023 0.0043 407 0.93 0.81
P0 0.097 0.36 0.071 8212 14 12
αP 0.12 0.071 0.069 60 0.20 0.18
c500,c 0.0059 0.024 0.0041 4.4 0.065 0.064
αG 0.0041 0.015 0.0029 64 0.065 0.064
βG 0.023 0.030 0.014 1.8 0.034 0.034
γG 0.011 0.034 0.0085 245 0.24 0.20

Table 1: Conditional and marginalized error forecasts for a CVL experiment with `max =
1000 and fsky = 1.

which is the error one gets fitting only one parameter while fixing all the others. What we
are more interested in, however, is the marginalized error. The diagonal entries of the inverse
of a Fisher matrix give the error for each parameter marginalized over all the others, which
one would obtain by a multivariate fit:

σi =
√

Cov(θi, θi) =
√

(F−1)ii . (6.4)

The off diagonal elements then give us the covariance between two parameters, Cov(θi, θj).
We start by considering an ideal, noiseless experiment in the absence of foregrounds, to

understand the general properties of the spectra in a simplified case, then we show a forecast
for the already available Planck data, and finally we consider two realistic future surveys.

6.1 Noiseless survey with no foreground contamination

In order to set an upper limit on the amount of information that can be in principle extracted
from the tSZ power spectrum and bispectrum, we start by considering the case of a noiseless
survey while also neglecting any issue of foreground contamination. This will also help us to
build understanding of the main factors which affect the final constraints. For brevity we will
refer to this configuration, slightly improperly, as Cosmic Variance Limited (CVL) survey.
This initial oversimplified analysis will then be generalized in the following sections, including
all realistic effects.

In tables 1 and 2 we show the forecasted error bars on all the parameters for a full sky
survey, with `max = 1000 and `max = 5000 respectively. To assess the impact of a change
in `min instead, we repeated both analysis switching from `min = 10 to `min = 70 and found
quantitatively negligible differences.

In both cases, if one considers the conditional errors, the power spectrum outperforms
the bispectrum analyzed on its own by a factor 2 ∼ 10; obviously when the two signals are
analyzed jointly, the errors shrink marginally with respect to the power spectrum case. If all
but one parameters are perfectly known, the power spectrum, comparatively bigger than its
noise with respect to the bispectrum, leads to tighter constraints on the last parameter. This
outcome is overturned by the marginalization needed for a joint fit of the parameters.
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Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.00044 0.0017 0.00031 0.86 0.025 0.018
h 0.0040 0.0079 0.0033 5.7 0.083 0.076
σ8 0.00040 0.0013 0.00030 0.43 0.011 0.010
nS 0.0050 0.026 0.0030 0.77 0.080 0.063
w0 0.0052 0.014 0.0039 11 0.10 0.092
bHSM 0.0013 0.0044 0.00091 78 0.16 0.16
P0 0.018 0.060 0.014 1754 2.7 2.6
αP 0.0050 0.022 0.0030 2.81 0.040 0.037
c500,c 0.0014 0.0054 0.00097 0.90 0.016 0.015
αG 0.00082 0.0026 0.00059 7.84 0.015 0.014
βG 0.0063 0.0067 0.0036 0.31 0.0077 0.0077
γG 0.0017 0.0045 0.0013 50 0.039 0.036

Table 2: Conditional and marginalized error forecasts for a CVL experiment with `max =
5000 and fsky = 1.

As anticipated in section 4, at power spectrum level the parameters have serious degen-
eracies among all of them, whereas the bispectrum has a more diverse response to parameters
change. To quantify this statement, in figure 6 we compare for each couple of parameters the
Pearson correlation coefficient

Corr(θi, θj) ≡
Cov(θi, θj)√

Cov(θi, θi)Cov(θj , θj)
, (6.5)

that one obtains using the power spectrum, the bispectrum, and their combination, in the case
of `max = 5000. Correlations are generally much higher for the power spectrum and for this
reason after marginalization the power spectrum loses much of its constraining power. The
same information is also displayed in figure 7, where we show the triangle plot of cosmological
and gas parameters.

To show the dramatic impact of degeneracies and the incremental reduction of constrain-
ing power when more and more parameters are jointly fitted, in figure 8 we directly compare
the error bars recovered in various scenarios. For each parameter the baseline (tightest pos-
sible constraints in our analysis) is the conditional error with a joint power spectrum and
bispectrum fit. All other errors are shown in figure 8 as ratio to this value. For each param-
eter the top error bar is calculated with the power spectrum analysis, the middle one with
bispectrum analysis and the bottom one with the joint fit of the two. For each bar the most
saturated and least saturated color show the conditional and marginalized error, respectively.
In the left panel the mid-tone bar is obtained fixing the value of all gas parameters and
marginalizing over cosmological ones; in the right panel we did the opposite.

Having made the point that the bispectrum allows to separately fit multiple parame-
ters, we now inquire what are the prospects considering tSZ observations combined to prior
knowledge of cosmological and gas parameters. Generally, the gas parameters are fixed to the
best-fit values of simulations [64], external X-Ray [36], or stacked tSZ clusters [65] measure-
ments, and not varied throughout the analysis of cosmological parameters. On the other hand,
one can also think of using the Planck primary anisotropies measurements to set a prior on
the cosmological parameters, and exploit tSZ anisotropies data to cross-check the gas parame-
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Figure 6: Comparison of the Pearson correlation coefficients for all couples of model param-
eters. Broadly speaking the correlations among the parameters are clearly higher when one
considers the power spectrum with respect to the bispectrum.
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Figure 7: Triangle plots for cosmological (left) and gas parameters (right). Here we consider
a Cosmic variance limited experiment with perfect foreground separation and `max = 5000.
Notice that the power spectrum 1σ ellipses have been rescaled by a factor to fit in the same
graph. The grey bands are the power spectrum conditional errors.

ters. We explore both strategies in table 3. In the left side we fixed (P0, αP , c500,c, αG, βG, γG),
removing the respective rows and columns from the Fisher matrix. In the right side, instead,
we add a (Gaussian) prior to the cosmological parameters, obtained from the 1σ errors in the
column TT,TE,EE+lowE+lensing+BAO in table 2 of [34], with the additional assumption
of the errors being uncorrelated. Since our paper is meant to be a proof of concept, and a
comparison between the power spectrum and the bispectrum, we refrain from comparing the
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Figure 8: Impact of degeneracies on the parameters error bars. Left) for each cosmological
parameter we show the error marginalized over all others parameter, the error marginalized
over cosmological parameters, fixing the gas ones, and the conditional error; all divided by
the conditional error of power spectrum and bispectrum combined. This is repeated for (top
to bottom in each triplet of bars) power spectrum, bispectrum, and combination of the two.
The constraining power of the power spectrum is hindered by the marginalization over other
parameters; on the other hand the bispectrum, in principle less constraining, is less affected.
Right) same, but switching cosmological and gas parameters.

Gas fixed Planck prior
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.078 0.023 0.016 P0 1230 2.2 2.0
h 0.89 0.074 0.068 αP 1.5 0.029 0.012
σ8 0.26 0.010 0.010 c500,c 0.39 0.015 0.015
nS 0.45 0.069 0.047 αG 6.9 0.014 0.014
w0 1.1 0.050 0.035 βG 0.15 0.0076 0.0075
bHSM 1.3 0.086 0.069 γG 41 0.039 0.036

Table 3: Left) marginalized error forecasts for cosmological parameters assuming the gas
parameters are fixed. Right) marginalized error forecast for gas parameters using Planck
priors on the cosmological parameters. In this table we always considered a CVL experiment
with `max = 5000 and fsky = 1.

results from table 3 with state of the art observations for both cosmological and gas parame-
ters, as our forecast are bound to be an upper limit and most likely over-optimistic. However,
they serve as a comparison between the power spectrum and the bispectrum efficiency and
to motivate the analysis of both.

Our results heavily depend, through the covariance, on high order correlations functions.

– 18 –



Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.00041 0.0016 0.00030 0.59 0.11 0.037
h 0.0038 0.0072 0.0033 13 0.60 0.49
σ8 0.00038 0.0013 0.00029 0.35 0.065 0.035
nS 0.0046 0.022 0.0030 11 0.50 0.39
w0 0.0048 0.015 0.0040 5.3 0.51 0.25
bHSM 0.0012 0.0039 0.00089 5.6 0.89 0.77
P0 0.017 0.056 0.013 147 13 9.1
αP 0.0046 0.021 0.0031 2.5 0.15 0.13
c500,c 0.0013 0.0049 0.00092 0.33 0.12 0.10
αG 0.00078 0.0024 0.00057 2.5 0.086 0.078
βG 0.0058 0.017 0.0038 2.2 0.46 0.37
γG 0.0016 0.0043 0.0013 4.0 0.15 0.11

Table 4: Same as table 2 (CVL, `max = 5000, fsky = 1) but with the halo redshift and mass
boundaries observationally set by Planck .

In particular we study the impact of massive halos at low redshift, since higher order corre-
lators are incrementally sensitive to the signal from these clusters. In principle, to calculate
the y-distortion along the line of sight one has to integrate from 0 to infinity, and again in
principle the HMF has been calibrated in [28] integrating clusters up to a mass of 1016M�.
However, the most massive cluster in the Planck SZ cluster catalogue [66] has a mass of
1.61 × 1015M�, whereas the closest detected cluster is at z = 0.011. To account for these
observational constraints we repeat our analysis enforcing these values as upper limits in the
redshift and mass integrations. The results that follow are shown in table 4 which is the main
result of the paper.

Removing massive nearby clusters has a deeper impact on higher order correlators with
respect to the power spectrums and the bispectrum, therefore the signal to noise increases for
both observables. For the power spectrum, this translates to proportionally tighter constraints
on the parameters, compared to the fiducial model. For the bispectrum the picture is more
complicated: conditional error bars shrink as expected; but correlations among different
parameters become more severe, enlarging the marginalized error bars. In any case, the
marginalized errors obtained with the bispectrum, even with this model, still improve the PS
one by approximately one order of magnitude. Therefore, our conclusions are qualitatively
unchanged. Even more than in the fiducial case, combining power spectrum and bispectrum
improves the constraining power and reliability of the results. Since the correlations are
particularly severe for a subset of parameters, fixing even a limited number of them would
allow for recovering most of the constraining power we forecasted with the Tinker fiducial
model, as seen in figure 10. Nevertheless we conservatively quote as marginalized errors the
results obtained without fixing any parameter.

6.1.1 Analysis of a subset of configurations

To validate our statement that the bispectrum is effective at breaking degeneracies because of
the shape-dependent response to changes in parameters, combined with the large number of
available triangles, we repeat our analysis limiting ourselves to only equilateral configurations,
only squeezed configurations, and a combination of the two.
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Conditional Marginalized
σEq

σPS
σSq

σPS
σEq+Sq

σPS
σFull

σPS
σEq

σPS
σSq

σPS
σEq+Sq

σPS
σFull

σPS

Ωm 5.9 86 5.9 4.0 10 5.7 0.65 0.029
h 2.6 29 2.6 2.0 13 23 0.99 0.015
σ8 4.7 74 4.7 3.3 11 25 3.2 0.025
nS 6.1 41 6.0 5.1 43 217 7.4 0.10
w0 4.5 184 4.5 2.8 3.3 14 0.67 0.0094
bHSM 4.9 71 4.9 3.5 0.98 2.0 0.11 0.0021
P0 4.7 75 4.7 3.3 1.2 1.5 0.12 0.0015
αP 6.0 65 6.0 4.3 3.7 6.0 0.55 0.014
c500,c 5.9 70 5.9 3.9 8.4 11 2.0 0.018
αG 5.2 81 5.2 3.1 1.1 2.3 0.21 0.0019
βG 6.7 57 6.7 1.1 3.4 37 1.4 0.025
γG 3.9 73 3.9 2.7 1.9 0.85 0.085 0.00079

Table 5: Ratio of the equilateral (Eq.), squeezed (Sq.), joint equilateral-plus-squeezed
(Eq.+Sq.), and full bispectrum error to the power spectrum one. After marginalization,
the constraining power of the bispectrum in one single limit is degraded comparably to the
power-spectrum. The same does not apply when we consider the combination of equilat-
eral and squeezed limit. Obviously, the full bispectrum — that encompasses many other
configurations, orthogonals and all the intermediate ones — is even more stable under the
marginalization.

If we consider conditional errors (left part of table 5), the power spectrum constraining
power exceeds the bispectrum The equilateral configurations contribute the most for the
bispectrum, whereas the squeezed ones have one order of magnitude less constraining power.
Upon marginalization (right part of the table), the constraining power of the squeezed and
equilateral bispectrum degrades, as it does for the power spectrum, with the squeezed one
degrading noticeably less. However, when we jointly analyze equilateral and squeezed limits,
the degeneracies start to break and the bispectrum marginalized errors start to be competitive
against the power spectrum ones. Obviously, the full bispectrum comprises even more kinds
of configuration that can further ease the remaining degeneracies. We can therefore conclude
that, as we claimed in section 4, the reason why the bispectrum constraining power is not
as sensitive as the power spectrum one to parameter degeneracies can be explained with
the presence of many more modes that are all weighted differently when the value of the
parameters changes.

6.2 Validation against Planck noise and foreground contamination

The Planck satellite has provided a full sky map of the Compton-y parameter [6]. This
data was used to measure the the tSZ power spectrum and the bispectrum, and the former
was used to constraint cosmological parameters. It is interesting to understand what are
the prospective results for a full fledged analysis of the bispectrum recovered from Planck
data. To do so, we consider the Planck Gaussian noise and foreground determined in [6],
and we restrict our analysis in the multipole range [70, 1000] to remove the bulk of non-
Gaussian noise and remaining spurious contributions. This was performed according to what
has been done in [6, 25]. We show our results in table 6. As it is well known, the parameters
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Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.0036 0.015 0.0026 13 0.26 0.19
h 0.022 0.054 0.017 24 0.94 0.86
σ8 0.0035 0.012 0.0026 5.9 0.12 0.12
nS 0.092 0.098 0.079 13 1.0 0.77
w0 0.19 0.62 0.15 160 1.4 1.3
bHSM 0.01 0.038 0.0078 610 2.0 1.8
P0 0.17 0.59 0.13 12000 33 29
αP 0.19 0.12 0.12 100 0.39 0.37
c500,c 0.01 0.041 0.0074 7.0 0.18 0.18
αG 0.007 0.025 0.0053 100 0.17 0.17
βG 0.039 0.077 0.027 3.1 0.092 0.092
γG 0.02 0.057 0.015 370 0.54 0.48

Table 6: Conditional and marginalized error forecasts for an experiment with Planck -like
noise level and foregrounds, `max = 1000, and fsky = 0.47.

Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.0027 0.0078 0.0018 2.4 1.4 0.18
h 0.017 0.032 0.015 51 4.3 4.1
σ8 0.0027 0.0072 0.0019 2.6 0.53 0.25
nS 0.13 0.076 0.07 48 6.3 3.2
w0 0.14 0.29 0.12 31 4.4 1.5
bHSM 0.0076 0.018 0.0056 55 6.3 5.2
P0 0.12 0.29 0.095 2100 120 83
αP 0.24 0.073 0.051 24 1.4 1.1
c500,c 0.0074 0.02 0.0052 2.7 0.83 0.76
αG 0.0052 0.012 0.0039 32 0.72 0.64
βG 0.028 0.086 0.019 17 3.4 2.7
γG 0.015 0.03 0.012 58 1.5 1.0

Table 7: Same as table 6 (Planck -like noise and foregrounds, `max = 1000, fsky = 0.47) but
with the halo redshift and mass boundaries observationally set by Planck .

cannot be meaningfully constrained separately, since are degenerate at power spectrum level.
Insead, they can be combined in a parameter that controls the overall amplitude, such as
F = σ8 Ω0.4

m (1− b)−0.4h−0.21 [9]. In fact, we see that after marginalization the relative errors
are O(100), while using the full bispectrum even Planck data could lead to O(1) relative
errors even after marginalizing over all other parameters.

Introducing the cuts in mass and redshift have a comparatively similar impact as in the
previous case, as shown in table 7.

6.3 Forecast for future realistic surveys

To assess what are the prospects of full bispectrum analysis in the near future and in the
mid-term, we use the results on section 5 in the Fisher matrix formalism to model the impact
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Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.00081 0.0033 0.00058 1.8 0.057 0.04
h 0.0074 0.015 0.0062 12 0.18 0.17
σ8 0.00075 0.0025 0.00056 0.91 0.024 0.023
nS 0.0095 0.049 0.0057 1.6 0.18 0.14
w0 0.0097 0.027 0.0075 23 0.22 0.20
bHSM 0.0023 0.0082 0.0017 160 0.37 0.35
P0 0.034 0.11 0.025 3700 6.0 5.6
αP 0.0096 0.041 0.0058 5.4 0.089 0.083
c500,c 0.0026 0.011 0.0018 1.9 0.035 0.034
αG 0.0015 0.0049 0.0011 16 0.032 0.031
βG 0.012 0.015 0.007 0.66 0.017 0.017
γG 0.0032 0.0086 0.0025 100 0.085 0.079

Table 8: Conditional and marginalized error forecasts for an experiment with SO-like noise
level and foregrounds, `max = 5000, and fsky = 0.30.

of Gaussian noise and foreground. As already discussed, the bulk of non-Gaussian contami-
nations can be removed enforcing a cut on the lowest multipole, which has little to no impact
on the forecasted constraints.

In particular we consider two specific surveys, that are representative of what can be
achieved in the next decade and in the next ≈ 30 years: Simons Observatory and the proposed
Voyage 2050 Spectro-Polarimeter, respectively.

Simons Observatory (SO) [67] is an observational facility currently being built in the
Atacama desert, that will be devoted to the measurement of gravitational lensing, tSZ effect,
CMB temperature and polarization on very small scales. It comprises one 6 m Large Aperture
Telescope (LAT) and three 0.5 m Small Aperture Telescopes. Here we just consider the
LAT instrument, whose noise profile is stated in table 1 of [67]. The observation field will
amount to 40% of the sky but, since we expect that some masking will be anyway needed,
we conservatively set fsky = 0.30 in the relative forecast. The results are reported in table 8.
Despite the lower sky coverage, the higher raw sensitivity and beam size will allow SO to
greatly improve constraints over Planck.

The Voyage 2050 Spectro-Polarimeter (V-SP) [68] is an L-class mission concept that has
been put forward for the ESA call Voyage 2050. V-SP will map the whole sky, and therefore
we conservatively assume it will use a mask much similar to the one employed by Planck to
generate the y map. Hence, when forecasting its performance we will take fsky = 0.47. We
use the noise profile reported in table 1 of [68]. Table 9 show the results in this scenario; the
performance incrementally increases over the SO forecast.

It is interesting to notice that V-SP will already be close to saturating the cosmic variance
limited constraints. Since from the technological point of view we could already have the raw
sensitivity to get close to the cosmic variance, this reinforces the need for developing new
better methods of foreground removal, that will allow us to make use of this potential.

For a visual comparison between a CVL survey, Planck, SO and V-SP, we refer to
appendix C.
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Conditional Marginalized
PS 1σ BS 1σ PS⊕BS 1σ PS 1σ BS 1σ PS⊕BS 1σ

Ωm 0.00064 0.0025 0.00045 1.3 0.037 0.026
h 0.0059 0.012 0.0049 8.3 0.12 0.11
σ8 0.00059 0.0019 0.00043 0.63 0.016 0.015
nS 0.0073 0.037 0.0043 1.1 0.12 0.093
w0 0.0076 0.021 0.0057 16 0.15 0.14
bHSM 0.0018 0.0064 0.0013 110 0.24 0.23
P0 0.027 0.088 0.02 2600 4.0 3.7
αP 0.0074 0.032 0.0044 4.1 0.059 0.054
c500,c 0.002 0.0079 0.0014 1.3 0.023 0.022
αG 0.0012 0.0037 0.00086 11 0.022 0.021
βG 0.0091 0.0099 0.0053 0.46 0.011 0.011
γG 0.0025 0.0066 0.0019 73 0.058 0.054

Table 9: Conditional and marginalized error forecasts for an experiment with V-SP-like noise
level and foregrounds, `max = 5000, and fsky = 0.47.

7 Discussion and Conclusions

In this work, we have carried out a joint Fisher analysis of the thermal Sunyaev-Zeldovich
power spectrum and bispectrum. In our analysis, we have gone beyond similar studies by
significantly increasing the level of accuracy and realism of our forecasts. This has been done
in several ways. First of all, we have evaluated the full power spectrum and bispectrum
(auto- and cross-) covariance in the analysis, including all NG contributions. This turns out
to be important, since we have found that the covariance is dominated by the connected
6-point component. Furthermore, we have considered a multi-component energy spectrum
scenario and we have modeled the effects of component separation in our forecasts, via an
effective noise term, which was obtained from a simple ILC procedure. Finally, rather than
focusing just on σ8 or on a small number of parameters, we have considered an extended set
of both cosmological and ICM parameters, with the aim to accurately assess correlations and
degeneracies and how these are dealt with by both the power spectrum and bispectrum.

In the end, we find out that the tSZ bispectrum is a very powerful observable, able to
produce even stronger constraints than the tSZ power spectrum, after marginalization in a
multi-parameter analysis. This is shown in our main results, summarized in figure 8 and
table 4.

Several reasons have been already pointed out in previous studies, which explain why
the bispectrum is so useful in this type of analysis. For example it has been observed that
the bispectrum is less affected by uncertainties in ICM parameters, because its contributions
come from (better understood) low-redshift, high-mass clusters [13]. Another important point
is that the bispectrum can break degeneracies that are present in a power spectrum-only
analysis, through a different amplitude scaling with parameters [15, 16].

On top of these previously known aspects, our main finding is that the bispectrum is
extremely efficient at breaking degeneracies not only via amplitude scaling, but also — and
mostly — due to the fact that different triangle shapes (e.g. equilateral and squeezed triangles)
are affected differently by parameter changes. This is a somewhat counter-intuitive result:
tSZ statistics are dominated by the one-halo term, which leads to a weak shape dependence
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on cosmology. Yet, we see that this is already strong enough in the bispectrum to produce
large improvements in the final results. Furthermore, the triangle shape dependence on
ICM parameters is of course stronger than on cosmology, significantly lowering the impact
of astrophysical uncertainties in the cosmological analysis (as well as allowing for a precise
measurement of astrophysical parameters themselves, possibly complementing [22]). Given its
importance, we have studied this effect in detail. To this purpose, we have isolated two specific
types of triangles, namely equilateral and squeezed. We have then verified that including only
one configuration type in the bispectrum analysis leads to only modest improvements in the
final results, whereas including both at the same time produces significantly better forecasts;
we have checked that is precisely due to a slightly different response to changes in parameters,
in the squeezed and equilateral limit. To further investigate such behaviour, we have isolated
the regions in the M -z plane which mostly contribute to the bispectrum in different limits,
showing that such regions do not fully overlap. In other words, when we compute equilateral
and squeezed bispectrum configurations, we effectively integrate the halo mass function over
slightly different intervals in mass and redshift. The effect of this on parameters is fairly small
for a single triangle. However, this adds up in a significant way when we produce the final
forecasts, by integrating over the very large number of available configurations.

The results obtained in our study clearly suggest that a joint power spectrum-bispectrum
analysis of, e.g., Planck data, or a complete likelihood study of this kind, using mock datasets
for future experiments, is clearly worth pursuing. This is the object of ongoing work. Another
interesting subject for future investigation consists in accounting for spectral corrections to
tSZ distortions, arising from relativistic speeds of electrons in clusters [69] (the so called rel-
ativistic SZ). Such corrections are mass and redshift dependent [70, 71] through the cluster
temperature scaling [72] and therefore could provide further help to break parameter degen-
eracies if better sensitivity is achieved. Further synergies, motivated by the recent interest in
the bispectrum of other cosmological probes [49, 73–77], could be achieved considering the
cross-bispectrum of tSZ with other tracers of the low-redshift Universe matter distribution.
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A Projection of the 3D tSZ field

A.1 Correlation functions for the projected Compton-y field

The total Compton-y field in a given direction n of the sky is defined via the following
line-of-sight integral [7]

y (n) =

∫
dt y3D (χ(t)n) =

∫
dχ a (χ) y3D (χ(t)n) . (A.1)

The three-dimensional Compton-y field is directly related to the electron pressure profile of
a single halo Pe via the following re-scaling

y3D (r) =
σT

mec2
Pe (r) , (A.2)

r being the comoving distance from the center of the halo. Under the assumption of small
enough scales, we can focus on the two-dimensional Fourier transform of the field (A.1)
employing the flat-sky approximation

ỹ` =

∫
dθn y (θn) ei`·θn , y (θn) ≡

∫
dχ a (χ) y3D (χ,θnχ) . (A.3)

In Fourier space, we define the connected part of the n-point correlation function of the
two-dimensional field ỹ`

〈ỹ`1 . . . ỹ`2〉c ≡ (2π)2 Pn (`1, . . . , `n) δD (`1 + · · ·+ `n) . (A.4)

We call the quantity Pn (`1, . . . , `n) polyspectrum of order n. In eq. (A.4) we described
the field on a flat sky, i.e. we approximate the full spherical harmonics decomposition of
the real field with a simple two-dimensional Fourier transform. By replacing eq. (A.3) into
eq. (A.4), we can derive the expression for the flat-sky polyspectra. In general, the redshift
integration appearing in eq. (A.3) would naturally translate into a complex n-dimensional
one. To simplify this calculation, we make use of the Limber approximation [78]: we as-
sume that the three-dimensional matter polyspectra have a weak dependence on the mo-
menta component corresponding to the line-of-sight direction. Consequently, the projec-
tion collapses into a simple one-dimension redshift integration and we can relate the angu-
lar multipoles ` to the three-dimensional momenta k via the well known Limber relation
k (`, z) ≈ {`/χ (z) , 0}. Finally, the general n-point polyspectrum Pn (`1, . . . , `n) relates to
the same order one P y3Dn (k1, . . . ,kn) for the three-dimensional Compton-y field (A.2) via

Pn (`1, . . . , `n) =

∫ ∞
0

dχ χ2−2n an (χ)P y3Dn (k (`1, χ) , . . . ,k (`n, χ))

=

∫ ∞
0

dz Q(n)(z)P y3Dn (k (`1, z) , . . . ,k (`n, χ)) ,

(A.5)

where we define the kernel

Q(n)(z) ≡ χ2−2n(z) an (z)
dχ

dz
=
χ2−2n(z)

H(z)
an (z) . (A.6)

For sake of completeness, let us recall the definition for the quantity P y3Dn (k1, . . . ,kn)

〈ỹ3D (k1) . . . ỹ3D (kn)〉c ≡ (2π)3 P y3Dn (k1, . . . ,kn) δD (k1 + · · ·+ kn) , (A.7)

ỹ3D (k) =

∫
d3x y3D (x) e+ik·x. (A.8)
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As we do rely on the halo model for the matter clustering, we can write the electron pressure
profile y3D (x) ∝ Pe (x) (A.2) (and its Fourier transform) as the sum of contributions from
different halos, the mass of the ith halo being mi, centered at position xi

ỹ3D (k) =
n◦ halos∑

i

∫
dmd3x ỹ3D (k,m) e+ix·k δ (m−mi) δ (x− xi) . (A.9)

The contribution ỹ3D (k,m) from the single halo of mass mc
500 can be obtained as

ỹ3D (k,m) = 4π
σT

mec2

∫
dr r2j0 (kr)Pe (m, r)

= 4πr500
σT

mec2

∫
dx x2j0 (kxr500)Pe (mc

500, x) ,

(A.10)

where we employed the mass definitionmc
500 and the variable x as requested for employing the

parametrisation (2.11). By replacing eq. (A.9) within eq. (A.7), it is possible to obtain any
desired order of correlation for the three-dimensional Compton-y parameter. Furthermore,
by splitting the sum in eq. (A.9) into contributions from different multi-halo configurations,
we do obtain the well known hierarchy of the different halo terms. We can finally obtain the
observable of interest via eq. (A.4). For consistency with the literature, we call the 2-, the 3-
and the 4-point polyspectrum power spectrum, bispectrum and trispectrum, respectively:

C` ≡ P2 (`) , (A.11)
b`1`2`3 ≡ P3 (`1, `2, `3) , (A.12)

T (`1, `2, `3, `4) ≡ P4 (`1, `2, `3, `4) . (A.13)

We underline that the assumption of an isotropic and homogeneous Universe (Cosmological
Principle) allows us to reduce the actual dependencies of the polyspectra. The power spectrum
is expressed as function of the module ` of the momentum ` (we define ` ≡ |`|) and the
bispectrum has a dependence on just 3 degrees of freedom, i.e. the edges of the associated
triangular configuration [79]. In the following, we will show in details the equations required
for our implementation as obtained from the formalism above.

A.2 Data vector

As far as the data vector of our analyses is concerned, we can write the power spectrum as
the sum of the one- and two-halo term

C` = C1h
` + C2h

` , (A.14)

C1h
` =

∫
dz Q(2)(z)

∫
dν f (ν, z)

mν

ρm,0

∣∣ỹ3D (kz` ,mν)
∣∣2 , (A.15)

C2h
` (`) =

∫
dz Q(2)(z) P lin.(kz` , z)

[ ∫
dν f (ν, z)

mν

ρm,0
b(1)(z,mν) ỹ3D (kz` ,mν)

]2

, (A.16)

where we introduced the abbreviation kz` ≡ |k (`, χ (z)) | and the mass mν is related to the
parameter ν via σ(mν) = δ/ν. To simplify the expression for the general matter polyspectrum,
we can introduce the following quantity

Iβµ (k1, . . . , kµ; z) =

∫
dν f (ν, z)

mν

ρm,0
b(β)(z,mν)

µ∏
i=1

ỹ3D (ki,mν) , (A.17)
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where b(0) ≡ 1 and we omitted the redshift dependence. Then, the Compton-y power spec-
trum (A.14) can be written in a more synthetic way as

C` =

∫
dz Q(2)(z)

[
I02 (kz` , k

z
` , z) +

[
I11 (kz` , z)

]2
P lin. (kz` , z)

]
. (A.18)

Borrowing the above notation, we can write the bispectrum used in this work as the sum of
the one- and two-halo term

b`1`2`3 = b1h
`1`2`3 + b2h

`1`2`3 , (A.19)

b1h
`1`2`3 =

∫
dz Q(3)(z) I03

(
kz`1 , k

z
`2 , k

z
`3 ; z

)
, (A.20)

b2h
`1`2`3 =

∫
dz Q(3)(z)

(
I11
(
kz`1
)
I12
(
kz`2 , k

z
`3

)
P lin. (kz`1 , z)

+ I11
(
kz`3
)
I12
(
kz`1 , k

z
`2

)
P lin. (kz`3 , z)+ I11

(
kz`2
)
I12
(
kz`3 , k

z
`1

)
P lin. (kz`2 , z) ). (A.21)

As already mentioned in the main text, we do not include the three-halo term as it would
require the second order halo bias for which a fit has not yet been performed.

A.3 Covariance matrix

Moving to the covariance matrix, we employ the full expressions (A.14) and (A.19) whenever
power spectra and bispectra are required. For higher order correlation functions entering
the covariance computation, we rely on their respective one-halo component, which can be
written in a general fashion as

P 1h
n (`1, . . . , `n) =

∫
dz Q(n)(z) I0n

(
kz`1 , . . . , k

z
`n ; z

)
. (A.22)

B Noise and foreground spectral shape

Here we enumerate the energy and angular dependence of the spectral components we used
in the forecasts for next generation surveys. For convenience, we express the SED in terms of
thermodynamic temperature rather than antenna temperature dividing them by the black-
body derivative

G(x) =
x2ex

(ex − 1)2
. (B.1)

where x = hνk−1
B T−1

CMB.

Instrumental noise.

ΘN(ν) = ∆T 2
ν , ξN → 0 , CN

` = 8 ln 2e`(`+1)θ2ν θ2
ν , (B.2)

with θν = (1/
√

8 ln 2)π/(180 × 60)FWHMν , where ∆Tν and FWHMν are the instrument
thermodynamic-temperature-error and Full Width at Half Maximum (FWHM) measured in
TCMB units and arcseconds respectively, for the channel ν.

CMB.
ΘCMB(ν) = 1 , ξCMB →∞ , CCMB

` = CTT` , (B.3)

where CTT` is the dimensionless CMB temperature power spectrum.
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Free free.

ΘFF(ν) ∝
{

1 + ln

[
1 +

(νFF

ν

)√3/π
]}
G−1(x) , νFF = 255.33 GHz

(
7000 K

1000 K

)3/2

,

ξFF = 0.02 , CFF
` =

(70µK)2

[ΘFF(31 GHz)]2
`−3 .

(B.4)

Thermal dust.

ΘDust(ν) ∝ x1.53
D

x3

ex − 1
G−1(x) , xD =

hν

kB21 K
,

ξDust = 0.3 , CDust
` =

(24µK)2

[ΘDust(90 GHz)]2
`−3 .

(B.5)

Synchrotron.

ΘSynch(ν) ∝
( ν

100 GHz

)−0.82
[
1 +

1

2
0.2 ln2

( ν

100 GHz

)]
G−1(x)

ξSynch = 0.15 , CSynch
` =

(101µK)2

[ΘSynch(19 GHz)]2
`−2.4 .

(B.6)

Radio point sources.

ΘRadio(ν) ∝ ν−0.5G−1(x) ,

ξRadio = 0.5 , CRadio
` =

(
√

3 µK)2

[ΘRadio(31 GHz)]2
2π

`(`+ 1)

`2

30002
.

(B.7)

Infrared point sources.

ΘIR(ν) ∝ x0.86
IR

x3

ex − 1
G−1(x) , xIR =

hν

kB18.8 K
,

ξIR = 0.3 , CIR
` =

2π

`(`+ 1)

1

[ΘIR(31 GHz)]2

[
(7µK)2 `2

30002
+ (5.7µK)2 `2−1.2

30002−1.2

]
.

(B.8)

C Full triangle plots

For completeness we report here the triangle plot for all the parameters. In figure 9 we
compare the power spectrum and bispectrum covariance ellipses for a noiseless survey with
`max = 5000, fsky = 1, and no foreground contamination, assuming the full integration
domain in redshift and masses from [28]. A comparison to the case in which the integration
boundaries have been set according to the Planck observation is drawn in figure 10.

Figure 11 and figure 12 show the triangle plots for actual surveys, taking into account
both instrumental noise and foreground contamination; Planck in figure 11, and SO and V-SP
in 12. For reference, we also show there the results for the CVL survey with `max = 1000 and
5000 respectively.

D Binning

As there is not a general recipe to choose a priori the best binning scheme, we validated our
choice both calculating the correlation between the binned and unbinned bispectrum, and by
comparing different schemes.
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Figure 9: Triangle plots for a Cosmic variance limited experiment with perfect foreground
separation, `max = 5000, and fsky = 1. Notice that the power spectrum 1σ ellipses have
been rescaled by a factor to fit in the same graph. The grey bands are the power spectrum
conditional errors. Figure 7 is a sub-sample of this one.

In general, one can evaluate the correlation between two signals, and verify if they can
be distinguished from each other using a given set of data, calculating theirs scalar product
using the covariance matrix as metric [80–82]

Corr(b, b′) ≡ 1

N
~b · Cov[b, b]~b′, N =

√
~b · Cov[b, b]~b

√
~b′ · Cov[b, b]~b′ . (D.1)

In [80–82], this method was employed in the case of the CMB primary bispectrum. That
relatively simpler case allowed them to carry an exact calculation of the correlation. In our
case this is not possible, and we have to resort to two approximations. First, in principle, the
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Figure 10: Triangle plot for the joint power spectrum and bispectrum analysis with a CVL
survey with `max = 5000 and fsky = 1. The figure propose a comparison of the two models
detailed in section 6.1. We also try to fix ns and αP to show the impact of the most degenerate
parameters, that could be determined using external data.

covariance would not depend on the tested models. In the case of the primary bispectrum,
the weakly non-Gaussian limit can be employed, so that the covariance only depends on the
C` and instrumental noise, both of which are independent of the bispectrum. For an actual
survey, the covariance could instead be constructed by the collected data and, as such, it
would again be independent from the theoretical model. Instead, in our case, we assume that
the covariance is the one calculated using our fiducial model, and we do not vary it while
we compare another model to the fiducial one. Second, the theoretically sound way to test
the binning would be to compare the binned bispectrum to the full bispectrum calculated on
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Figure 11: Triangle plot for the joint power spectrum and bispectrum analysis with a CVL
survey with `max = 1000 and fsky = 1, compared with Planck.

every multipole, just repeating the representative value of each bin for every configuration
in the bin. However, this leads to the problem that the covariance matrix quickly becomes
ill-conditioned when the binning is made finer and finer. This problem was again not present
in the case of the primary bispectrum since in the weakly non-Gaussian limit the covariance
matrix is diagonal and, as such, trivial to invert. To overcome this problem, we exploit
the fact that the bispectrum is a monotonous function of (`1, `2, `3). The values of the
bispectrum in the bin that deviate the most from the bin representative will therefore be the
two calculated at the extreme bin boundaries, e.g. (100,100,100) and (150,150,150) for the
bin [100, 150]× [100, 150]× [100, 150]. Therefore, we compare the fiducial bispectrum b with
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Figure 12: Triangle plot for the joint power spectrum and bispectrum analysis with a CVL
survey with `max = 5000, compared with SO and V-SP. they have fsky = 1, 0.30, and 0.47,
respectively.

the bispectrum calculated on the higher boundary bhi and the lower one blow. We obtain

Corr(b, bhi) = 99% , Corr(b, blow) = 97% . (D.2)

We have verified that changing the maximum and minimum multipoles ([10, 5000],
[70, 5000], [10, 3000]), the number of bins (27, 25, 32) has little effect (. 10%) on the signal to
noise ratio in the case of logarithmically spaced bins. The same applies when using (according
to [25]) a combination of linearly and logarithmically spaced bins (linear with ∆` = 64 in
[32, 1440], 10 logarithmically spaced ones in [1440, 5000]).
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E Bispectrum derivatives and breaking the degeneracies

To partially motivate the difference among the derivatives of squeezed and equilateral bispec-
trum, we investigated the impact of parameter changes on the bispectrum kernel. Not to have
to deal with numerical convergence of derivatives in each point we consider the bispectrum
kernel evaluated with the fiducial parameters, compared with the same evaluated with one
parameter increased by 10%, and finite differences defined as

∆θ
∂b`1`2`3
∂ ln z

=
∂b`1`2`3
∂ ln z

(θ, θ̃)− ∂b`1`2`3
∂ ln z

(1.1θ, θ̃) (E.1)

where θ is the parameter being varied and θ̃ is the vector of all the others which have been kept
fixed. We already argued that isoperimetric bispectrum configurations probe quite similar
regions in the z-M plane, but here we need to focus on the subtle differences that are still
present. In the left four panels of figure 13 we therefore compare the bispectrum kernel of the
isoperimetric (10, 2995, 2995) and (2000, 2000, 2000) configurations, calculated for different
combination of parameters. Different parameters modify the kernel in different way (first vs
second row), but also different configurations react differently (left vs central column). To see
this, we show contour lines for the kernel calculated with the parameter fiducial value (solid)
and with one of the parameters (Ωm on top, βG at the bottom) increased by 10%. This can
be better appreciated in the right column, where we carried out the mass integral and plotted
the finite differences as defined in eq. (E.1). The bispectrum derivatives (which are in a sense
related to the integral of the curves plotted there) are not only different between configurations
(squeezed or equilateral) but different parameters affect the various configurations differently
(the ratio of the curves in the top panel is different from the ratio of the two curves in the
bottom panel).
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