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ABSTRACT
The primordial gravitational wave background (GWB) offers an exciting future avenue of discovery for new physics. Its
information content encodes multiple eras in the early Universe’s history, corresponding to many orders of magnitude in
frequency and physical scale to be measured today. By numerically solving for the GW transfer functions we provide simple
yet accurate formulas describing the average power of the large-scale energy spectrum of the GWB for arbitrary primordial
tensor power spectra. In doing so, we can pedagogically explain and clarify previous GWB literature, highlight the important
cosmological parameters of various GWB features, and reveal multiple ways in which cancelling conceptual errors can give
deceptively accurate results. The scales considered here are particularly important for CMB probes of the GWB, via B-modes and
spectral distortions. In particular, we carefully study the effects of both neutrino damping, and the precise nature of the transition
between the radiation-dominated (RD) and matter-dominated (MD) eras. A byproduct of numerically solving the problem is the
ability to study the robustness of common approximations in the literature. Specifically, we show that a numerical treatment is
especially important around the RD–MD transition, and for a brief moment of history where neutrino damping occurs during
MD. In passing, we also discuss the effects of late acceleration caused by dark energy – showing that this can be neglected in
most practical GWB applications – and the effects of changing relativistic degrees of freedom on the GWB at very small scales.

Key words: gravitational waves – early Universe – inflation – cosmology: theory.

1 IN T RO D U C T I O N

The detection of the first gravitational wave (GW) (LIGO Scientific
Collaboration & Virgo Collaboration 2016) opened a door to a novel
way of studying the Universe. Decades of studying the light arriving
from the cosmos has provided us with modern precision cosmology
as we know it, and with some poetic license, we are now able to hear
the Universe as well as see it.

The excitement of this prospect has led to a suite of new upcoming
probes (either proposed or under construction) which will listen for
GWs in different frequency bands (see Campeti et al. 2021, for
review). From lowest to highest frequency GWs we have CMB
B-mode measurements (Ade et al. 2018; Aghanim et al. 2020),
spectral distortion measurements (Kite et al. 2021), pulsar timing
array measurements (Perera et al. 2019; Alam et al. 2020), and
finally direct detection using interferometry (Abbott et al. 2020a,
b). Through a combination of all these probes we can construct
a comprehensive picture of the symphony of GWs in the Uni-
verse, and refine our understanding of fundamental physics in the
process.

In this work, we focus on primordial origins of GWs rather than
astrophysical sources. Our study therefore relates to searches for a
stochastic gravitational wave background (GWB) rather than single
isolated events. The exact physics that will be revealed through

� E-mail: thomas.kite@manchester.ac.uk

studying this background is broad and diverse (see Caprini &
Figueroa 2018, for review).

The goal of this paper is then twofold: firstly to pedagogically
introduce the physics of the GWB to clarify other literature, revealing
potential pitfalls in the analytic modelling, and secondly to provide a
simple yet accurate analytic description for the mapping between the
present-day large-scale GWB energy spectrum and the correspond-
ing primordial tensor power. The latter allows our results to be applied
to general inflationary models, making this work particularly relevant
to the interpretation of B-mode and spectral distortion searches for
new physics.

The mapping from underlying physical model to present-day
observations requires a detailed understanding of the GW transfer
function, for which various solutions have been considered (e.g.
Watanabe & Komatsu 2006; Dicus & Repko 2005; Caprini &
Figueroa 2018). We expand upon this literature with a numerical
treatment of the GWB which accounts for the nuanced cosmological
expansion through radiation-dominated (RD) and matter-dominated
(MD) eras, the late time accelerated expansion from dark energy (DE)
and the non-negligible damping from free-streaming neutrinos. This
allows us to give the promised simple fits for the average large-
scale GWB energy spectrum in a number of fiducial cosmological
scenarios.

Accurately accounting for the transition between RD and MD eras
is especially important in calculations of the transfer function for non-
standard thermal histories, such as those with epochs of early matter
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domination frequently encountered in a variety of phenomenological
extensions of the standard cosmology (Acharya et al. 2008, 2019),
or for scenarios where the primordial GW spectrum is significantly
enhanced or modulated, relevant, for instance, in scenarios of pri-
mordial black hole formation (Ballesteros, Rey & Rompineve 2020;
Arbey, Auffinger & Silk 2021; Bhattacharya, Das & Dutta 2021;
Green & Kavanagh 2021). We will discuss how the results of this
paper can also be straightforwardly extended to such applications.

This paper is organized as follows: in Section 2 we qualitatively
review the broad range of fundamental physics imprinted on the
GWB. This will aid the reader in understanding the more quantitative
approach in Section 3, where we analytically solve the equation
governing the evolution of GWs in limiting cases. These solutions,
although previously considered, will serve to clarify some confusion
in the literature about their application. The numerical method is
explained and results shown in Section 4, focusing on the reliability
of the analytic results previously found. One region of parameter
space not captured well by existing approximations is the MD–
RD transition, which is important for CMB scale probes. Hence
in this section, we provide simple fits for the large-scale GWB,
providing an alternative to the usual analytic approximations. More
general features of the GWB are discussed in Section 5, where
we demonstrate the principal cosmological dependence of neutrino
damping and the main effects of late time acceleration on the GWB.
For completeness, we include some discussion of changes in the
relativistic degrees of freedom and their relevance to SD constraints
on GW backgrounds. We point out in this section how a combination
of the simple fits and pre-tabulated data on relativistic degrees of
freedom can accurately model the spectrum to arbitrary scales.
Finally, we summarize and conclude in Section 6.

2 PH Y S I C S C O N T E N T O F TH E G W B

The study of cosmological perturbation theory explains the evo-
lution of perturbations on the otherwise smooth expanding FLRW
background, and is the foundation for much of modern cosmology
(Ma & Bertschinger 1995). For detailed explanation and derivations
with details about GWs see Weinberg (2008), but we summarize the
essential steps here. Perturbatively small terms are added to both
the metric gμν and the stress energy tensor Tμν , which can then be
equated through Einstein’s field equations. Three fundamental types
of perturbations emerge from this calculation: scalars, transverse
vectors, and spatial transverse traceless tensors. The latter are what
we also understand as GWs. These waves couple to the correspond-
ing spatial transverse traceless tensor component within Tμν , the
anisotropic stress of the medium, �, which provides a source term
that can damp the GWB.

This last point is quite important, as typically speaking the
particle species in the primordial plasma do not carry considerable
anisotropic stresses: tightly-coupled fluids rapidly isotropize and are
dominated by their densities and velocities, after which comes a
period of free streaming dominated solely by velocity.1 Only a brief
intermediate phase therefore leads to a non-negligible anisotropic
stress that can interact with and damp the GWB. The dominant
damping effects therefore arise from the GWs themselves sourcing

1For a more general analysis that interpolates between the kinetic and
hydrodynamic regimes, incorporating ambient matter interactions, see for
instance (Baym, Patil & Pethick 2017; Flauger & Weinberg 2018; Mirón-
Granese 2020; Zarei et al. 2021).

the anisotropic stress in the medium, which will lead to an integro-
differential equation that we solve numerically.

A subdominant contribution to the damping is added by the
cosmic photon field. At early times, the photon fluid inherits enough
energy from the GWB to produce a noteworthy distortion to the
blackbody spectrum (Chluba et al. 2015), but with no discernible
effect on the GWB. The GWB scales most affected by photons
are k � 10−2 Mpc−1, amounting to a 14 per cent reduction in the
amplitude squared according to the work of Saikawa & Shirai
(2018). However, we note that at these scales it is both possible and
necessary to model the photon decoupling with the full Boltzmann
equation, rather than using a modified version of the damping
term (e.g. equation 17a below), which contains several simplifying
assumptions. The damping effect of photons will not significantly
change the results of this paper, and a full detailed treatment is left
to future work.

The neutrino, on the other hand, has a considerable damping effect
over a large set of scales. Previous studies show that the neutrino
field will damp the GWB amplitude squared by � 35.6 per cent
(Weinberg 2004; Dicus & Repko 2005) at scales k � 1/500 Mpc−1.
The damping effect arising from neutrinos will be investigated below,
verifying and generalizing on these previous studies. We note that
it is conceivable to treat the neutrino field with the same level
of sophistication as the photon field: understanding how inherited
energy from the GWB will distort the otherwise thermal distribution
of neutrino momenta, and modelling a gradual decoupling of the
particles through full Boltzmann hierarchies. However, this program
is beyond the scope of this paper.

The bottom line then is that within the standard thermal history of
the Universe, the GWB is mostly free from the surrounding plasma,
only receiving small predictable damping effects from free streaming
neutrinos. The rest of the information encoded in the GWB therefore
comes from the state of the Universe at the time of horizon crossing
for each frequency, after which simple propagation occurs. This
is, in fact, the double-edged sword of GW cosmology: a feeble
interaction that simultaneously makes a clean and powerful probe of
almost the entirety of cosmological history, but which also makes
for an incredibly difficult detection at present time. A detection
is a sufficiently monumental task that glimpsing the GWB has
become the aspiration of many scientific teams, with a diverse set of
probes.

One important state of the Universe’s history cleanly imprinted as
a GWB feature is the precise moment that relativistic particle species
no longer dominate the universal expansion, giving way to a matter
dominated era. Since GWs have a different evolution in each of the
eras, there is a predictable change in shape of the energy spectrum
(see Section 4.2). One goal of this paper is to elucidate this transition
in order to facilitate comparison between early and late Universe
probes of the GWB.

To model the moment of this transition it is important to cleanly
separate the cosmic inventory into relativistic and non-relativistic
particles. This usually equates to distinguishing massive and massless
species, but some subtleties arise when considering neutrinos. We
now know from data on neutrino oscillations (Fukuda et al. 1998;
Ahmad et al. 2001, 2002) to expect massive neutrinos, albeit with
masses limited to sub-eV scales (Planck Collaboration 2018b; Aker
et al. 2021). The concordance model in Cosmology therefore still
treats these as massless entities in most applications. This is often
sufficient since the sum of neutrino masses is predicted to be
sufficiently small that the early-universe dynamics will resemble
that of massless particles, even if at least two of the neutrino species
must be non-relativistic today (Lesgourgues & Pastor 2006).
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1368 T. Kite et al.

In this paper, we therefore carefully distinguish the photon energy
density, �γ = 5.42 × 10−5 (T0/2.7255 K)4 (h/0.675)−2, from the
total relativistic energy density

�rel = �γ + �ν =
[

1 + Neff

(
7

8

) (
4

11

)4/3
]

�γ , (1)

which includes the neutrino energy density �ν . The number of
relativistic degrees of freedom, Neff, parametrizes the extra massless
degrees of freedom relative to the photons. The factor of 7/8 arises
due to the differences in particle statistics (Bose-Einstein or Fermi-
Dirac), while the factor (4/11)4/3 relates to the energy release during
electron-positron annihilation. In this paper, we assume the standard
model expectation value of Neff = 3.046 (Mangano et al. 2005; de
Salas & Pastor 2016), which in turn gives �rel = 9.18 × 10−5 today.
This distinction between the photon field and the full relativistic
cosmic inventory has been ambiguous or neglected in some literature,
leading to additional confusion around the exact moment of RD–
MD transition (e.g. see discussion in sect. 5.2 in Caprini & Figueroa
2018). As previously mentioned, resolving this disparity is important
for accurate comparison between the largest scale CMB B-Modes
and spectral distortion measurements, and constitute one driving
motivation for this work.

One more energy component needs to be included to complete
the cosmic inventory: the cosmological constant or DE2 ��. Despite
being the dominant form of energy today, it makes up a tiny fraction
of the Universe’s content at primordial times. The expected effect of
this component is only small changes on the largest physical scales,
which can be verified numerically (Section 5.2). A more notable
difference from the late-time acceleration is the change in the age of
the Universe, which complicates the application of analytic solutions,
as we clarify here.

The physics discussed thus far is all needed to accurately model
the GWB down to scales of k � 103 Mpc−1. Beyond these scales the
spectral features arise from changes in the number of relativistic
degrees of freedom, g∗, as originally discussed in Watanabe &
Komatsu (2006), generalized by Boyle & Steinhardt (2008), and
recently solved to high precision by Saikawa & Shirai (2018). These
changes in the energy budget, arising from the cooling effect of the
universal expansion, cause small temporary changes in the expansion
rate, which is imprinted on the GWB from the moment of horizon
crossing. We will briefly discuss the importance of these effect on
spectral distortion constraints, leaving the details of the physics to
the aforementioned papers.

3 A NA LY T I C G W S O L U T I O N S

The equation of motion governing the evolution of a GW, derived
from cosmological perturbation theory, is given by (Weinberg 2004;
Watanabe & Komatsu 2006; Boyle & Steinhardt 2008)

∂2
ηhλ

k + 2
a′

a
∂ηh

λ
k + k2hλ

k = 16πGa2�λ, (2)

where hλ
k (η) is the amplitude of the GW at wavenumber k for each

polarization λ = +, ×, and �λ(k, η) is the anisotropic stress of the
surrounding primordial plasma, both as a function of wavenumber k
and conformal time η. Primes denote derivatives respect to conformal
time, but we keep some explicit derivatives for clarity later where

2For the purposes of this paper, �� will be referred to as dark energy and
cosmological constant interchangeably – only dark energy with w = −1 is
considered.

we will change coordinates. The amplitude of a physical GW
can be written as the product of a transfer function with some
initial amplitude hλ

k (η) = h
λ,prim
k TGW(k, η), and as such we have

TGW(k, 0) = 1. This decomposition of transfer function and initial
condition helpfully separates the statistical from the deterministic,
as well as distinguishing the inflationary from the post-reheating
dynamics.

A primary goal of this paper is to give simple yet precise estimates
for the energy density of the GWB, which measured relative to the
critical density is given by

�GW(k) = ρGW

ρc
(k) = PT (k)

12a2H 2
[T ′

GW(k)]2. (3)

Here, the primordial tensor power spectrum

PT (k) = 2k3

2π2

∑
λ

〈∣∣∣hλ,prim
k

∣∣∣2
〉

(4)

encodes the statistical properties of the initial conditions via an
ensemble average.3 For many applications the energy density is
the essential quantity one needs to know, since any experiment
measuring the GWB is sensitive to its energy density at a given time
and scale/frequency. It is clear from equation (3) that fundamental
link between the primordial PT and �GW at any other time is the
transfer function TGW, which we study in detail next.

3.1 Transfer function

As previously discussed, a key feature in the GWB is a distinctive
bend on physical scales corresponding to the transition between the
RD4 and MD eras of the Universe’s history. To understand this effect
it is instructive to first ignore both the contribution of DE and the
effects of damping – the former being negligible and the latter being
an unnecessary complication to describe the physics of the transition.
Solving the Friedman equations in this limit we have

η = 2

√
a�m + �rel − √

�rel

H0�m
, (5a)

a = 1

4
η2H 2

0 �m + ηH0

√
�rel, (5b)

a′

a
= aH = aH0

√
�ma−3 + �rela−4. (5c)

Using these expressions one can find

a′

a
= 1

η
+ 1

η + η∗
= 1

η∗

(
1

ξ
+ 1

1 + ξ

)
, (6a)

η∗ = 1/k∗ = 4
√

�rel/H0�m. (6b)

The characteristic time-scale defined here is η∗ = 540.44 Mpc for up-
to-date cosmological parameters from Planck Collaboration (2018a).
With this time-scale, the dimensionless quantities ξ = η/η∗ and κ =
k/k∗ = kη∗ naturally emerge. Using these variables is advantageous
for various reasons, but most notably it adds a degree of invariance
in considering different cosmologies. Note the commonly appearing
term κξ = kη, which helps in matching to common approximations
in the literature. Another common time-scale for RD–MD equality is

3We have followed the convention of Watanabe & Komatsu (2006) and
Saikawa & Shirai (2018), which can be expressed in terms of other
conventions by noting the normalization of polarization tensors in the latter
reference, between equations (2.4) and (2.5).
4We remind the reader that despite the misnomer we include relativistic
neutrinos here.
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aeq = �rel/�m, defined simply as the time in which energy densities
of the respective components matched.5

By incorporating this change of variables to the differential
equation we find an elegant form

∂2
ξ TGW + 2

(
1

ξ
+ 1

1 + ξ

)
∂ξTGW + κ2TGW ≈ 0. (7)

The characteristic time-scale used here can be further motivated by
noticing that it is the time that balances the two contributions to
equation (5b), showing it is closely related to the balance of matter
and radiation.

Using equation (7) it is possible to study the evolution of GWs far
into both RD (ξ � 1) and MD (ξ 	 1). In each limiting case we
obtain

2

(
1

ξ
+ 1

1 + ξ

)
−→

{
2/ξ for RD
4/ξ for MD

, (8)

which offer simple solutions to equation (7) in terms of spherical
Bessel functions which we summarize here

T RD
GW = Aj0(κξ ) − By0(κξ ), (9a)

T MD
GW = 3

κξ
[Cj1(κξ ) − Dy1(κξ )] , (9b)

with derivatives

T ′ RD
GW = −k [Aj1(κξ ) − By1(κξ )] , (10a)

T ′ MD
GW = − 3k

κξ
[Cj2(κξ ) − Dy2(κξ )] . (10b)

Here A, B, C, and D are constants determined from initial conditions
and matching conditions which we discuss below. Note that the
derivatives here are still with respect to conformal time, which yields
factors of k. The terms involving spherical Bessel functions of the
first kind, jn, are constant at early times, and have been scaled here
such that A = C = 1 gives an early time normalization to unity.
Spherical Bessel functions of the second kind, yn, are the decaying
modes.

The solutions given above are each valid deep into each regime,
but we have yet to discuss the transition between them. Note first of
all that MD scales (κ � 1) simply stay constant in the RD era, since
for those modes we have κξ � 1. On the contrary, we must be careful
with the RD scales (κ 	 1) during the MD era, since these modes have
already had time to evolve and decay by that time. An approximation
for this matching process is performed by Watanabe & Komatsu
(2006) (henceforth WK06), where by assuming an instantaneous
transition one can solve

T RD
GW

∣∣∣∣
ξ=1

= T MD
GW

∣∣∣∣
ξ=1

, (11a)

T ′ RD
GW

∣∣∣∣
ξ=1

= T ′ MD
GW

∣∣∣∣
ξ=1

, (11b)

which gives a functional form to the constants previously defined:

A = 1, (12a)

B = 0, (12b)

5It is often unclear which time-scale an author uses, and as such we will keep
a strict convention here. The TGW approximations by Watanabe & Komatsu
(2006), which we discuss shortly, give the correct limiting cases using η∗ as
defined in this work.

C(κ) = 1

2
− cos(2κ)

6
+ sin(2κ)

3κ
, (12c)

D(κ) = − 1

3κ
+ κ

3
+ cos(2κ)

3κ
+ sin(2κ)

6
. (12d)

This matches the equations given by WK06 once accounting for dif-
ferent variable conventions. A noteworthy difference in convention
is the lack a step function that enforces C → 1 and D → 0 for κ

� 1, which is already the natural tendency of the functions as they
are written here. Notice that the constant mode solution for the RD
scales will excite a decaying mode in the MD era, and thus D cannot
be ignored even if B has been.

3.2 Energy spectrum

By using the analytic forms derived in Section 3.1 the expected limits
of the energy spectrum equation (3) can be derived. Recalling that we
are only interested in the power spectrum normalized energy density
as seen today (η0 	 η∗), we can take the limit in the MD era:

�GW

PT

∣∣∣∣
ξ0

= 1

12H 2
0

(
T ′ MD

GW

)2

= 1

12H 2
0

9

η2∗ξ
2
0

[Cj2(κξ0) − Dy2(κξ0)]2 , (13)

from which the high and low κ limits can be derived. In both limits
however we note that any realistic probe of the GWB will have
sensitivity on scales much smaller than those crossing horizon in
recent times (k 	 1/η0). This statement leads to κξ 0 	 1 expansions,
for which we have (Watanabe & Komatsu 2006)

jn(x) ≈ sin(x − nπ/2)

x
for x 	 1, (14a)

〈
jn(x)2

〉 ≈
(

1

2

)
1

x2
for x 	 1, (14b)

where angle brackets indicate averages over an oscillation, leading
to an explicit6 factor of 1/2.

For fixed ξ 0 and large κ , the dominant term in the expansion
of equation (14) will have a linear term κ/3⊂D(k) combined
with −cos (κξ 0)/κξ 0⊂y2(κξ 0). This gives a flat (albeit oscillating)
spectrum to high frequencies:〈

�GW

PT

∣∣∣∣
ξ0

〉
κ	1↓≈ 9

12H 2
0 η2∗ξ

2
0

〈[
−κ

3

cos(κξ0)

κξ0

]2
〉

κξ0	1
↓≈

(
1

2

)
η2

∗
12H 2

0 η4
0

=
(

1

2

)
�rel

12
. (15)

Note however in the final equality we have used a value of η0 derived
from equation (5b), by setting a0 = 1. This may appear problematic,
since DE dominates the expansion from a � 3/4, and thus changes
the age of the Universe. The analytic approximations derived here
however were derived explicitly in a Universe without DE, and should
not be used in conjunction with DE-modified values of η0. This
cancellation of errors is vindicated by the numerical solutions (see
Section 5.2).

To investigate the behaviour at low κ , we start with C(κ) → 1,
D(κ) → 0, and again apply the subhorizon condition κξ 0 	 1. This

6For clarity, we will keep this convention of explicit 1/2 throughout the paper.
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1370 T. Kite et al.

suggests the dominant term being −sin (κξ )/κξ⊂j2(κξ ). A similar
calculation to above gives〈

�GW

PT

∣∣∣∣
ξ0

〉
κ�1↓≈ 1

12H 2
0

9

η2∗ξ
2
0

〈[
− sin(κξ0)

κξ0

]2
〉

κξ0	1
↓≈

(
1

2

)
�rel

12

9

κ2
. (16)

These results will be used in Section 4.2 to choose a functional form
for an envelope fit to the data, and in turn verify the accuracy of the
numerical calculations.

3.3 Anisotropic stress

We previously discussed that some particles will contribute to the
anisotropic stress of the medium, and constitute damping terms to the
GW solution. These stresses are excited by the propagation of the GW
itself, and hence makes equation (2) an integro-differential equation,
requiring a more careful treatment than the previous section. We do
not derive any analytic solutions here, but instead quote the results
of Dicus & Repko (2005) (henceforth DR04). We give the form of
the damping integral here both for completeness, and to motivate a
numerical approach to solving the problem, as described in Section 4.

Explicitly evaluating the RHS of equation (2) for the case of
neutrinos gives (Weinberg 2004)

16πGa2�λ
ν = −24fν

(
a′
a

)2 ∫ η

ην
K [k(η − η̄)] T ′

GW(η̄) h
λ,prim
k dη̄,

(17a)

fν = �ν

�γ + �ν

1

1 + a/aeq
= fν,0

1 + a/aeq
, (17b)

K(x) = 1

16

∫ 1

−1

(
1 − s2

)2
eisxds = j2(x)

x2

= 3 sin(x)

x5
− 3 cos(x)

x4
− sin(x)

x3
, (17c)

where ην is the time at which neutrinos decouple, corresponding to
a temperature of � 2 MeV (e.g. Jeong et al. 2014).

An example of this damping term is shown in Fig. 1, where it is
seen that at the time of horizon crossing there is a significant damping
of the wave followed by a period of regular propagation, albeit
at a lower overall amplitude. The dotted lines show approximate
amplitudes for other terms in equation (2), revealing that the damping
is subdominant, and comparable only at horizon crossing.

We note in passing that more general particle interactions in the
collision time approximation contribute an additional exponential
suppression inside the integrand of equation (17a) of the form
exp [− ∫ η

η̄

dη′
τc(η′) ], where τ c is the average time between particle

collisions (Baym et al. 2017), making manifest that tightly cou-
pled particles rapidly isotropize and suppress anisotropic stresses,
whereas free streaming particles, for which τ c → ∞ reduces to
equation (17a). We also note that Saikawa & Shirai (2018) use
a modified expression for the neutrino energy fraction fν which
includes energy inherited from e+e− annihilation. This leads to
a slightly greater damping effect at scales of k ∼ 3 × 104 Mpc−1,
quickly adopting the same asymptotic limit as found in this paper
(See Fig. 8).

Within the RD era, the damped transfer functions are given by
DR04 in the form of a series sum of spherical bessel functions:

TGW(kη) =
∞∑

n=0

a2nj2n(kη). (18)

Figure 1. A figure showing an example of the neutrino damping term and
its effect on the transfer function at k = 10 Mpc−1. The top panel reveals
small phase shifts accompany a drop in amplitude of TGW around the time of
horizon crossing. Dashed lines indicate negative branches of the oscillating
function. The lower panel shows the damping term 16πGa2�ν . Dotted lines
show other terms in the differential equation associated with the wavenumber
and Hubble expansion.

Although in principle, this sum has infinitely many terms, in practice
only a few are needed. We will take this series with the 7 coefficients
provided by DR04 as a benchmark in the RD era, but differences are
expected as the Universe becomes more matter dominated.

4 N U M E R I C A L S O L U T I O N S

Evaluating the damped solution (see Section 3.3) has all the usual
difficulties of an integro-differential equation: it involves an integral
over the history of the GW’s own velocity, and it cannot be easily
pretabulated since the integrand depends on the upper limit of the
integral itself. In this work, we use an iterative method to achieve
the solution to within some desired accuracy: the first iteration of
the method assumes no damping [therefore solving equation (7)] to
achieve an initial guess T (0)

GW. Each subsequent iteration calculates
T (N)

GW by inserting T (N−1)
GW to the damping integral. This has the

advantage of allowing the damping term to be pre-calculated for
a series of values of η, and then interpolated ready to use in a new
iteration of the ODE solution. This makes the solution tractable, even
if still somewhat numerically expensive, involving O(N ) integrals
for a total O(N2) algorithm.

The iteration process ends by some metric of convergence. Here we
sum the squared residuals between consecutive solutions for T ′ (N)

GW

and divide by the number of timesteps and the wavenumber k. The
former division guarantees an intensive metric for convergence –
independent of number of points considered – and the latter accounts
for the derivatives being � k larger than the transfer functions7 which
are bounded −1 ≤ TGW ≤ 1.

Depending on the chosen wavenumber and desired precision, the
method takes � 5–10 iterations to reach a final converged solution.
This takes just a few seconds after moderate optimization, using
ODE solvers in the anisotropy module of CosmoTherm (Chluba &

7Alternatively residuals between undifferentiated TGW can be considered, but
derivatives are already stored in memory for the damping integral, hence this
approach constitutes a memory saving.
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Clarifying transfer function approximations 1371

Figure 2. A graph showing examples of TGW for k/Mpc−1 ∈ (1, 0.01, 0.001).
Cases with neutrino damping (black) and without (blue) are shown. The
former is approximated by WK06 (orange) and the latter by DR04 (red). It
can be seen that the free function is well approximated in each era, but not in
the RD–MD transition. The damped function was approximated only in the
RD era, hence showing large discrepancies at late times. It should be noted,
however, that shortly after the transition the damping becomes negligible.

Sunyaev 2012). This made it possible, with parallelization, to quickly
solve the many tens or hundreds of thousands of k values needed to
fit accurate envelopes to energy spectra.

A similar iterative approach was recently used by Li & Shapiro
(2021) to study backreaction effects within an extended �CDM
model, where each iteration depends on an integral across scales
instead of time. This implementation, while likely more challenging,
was also capable of solving the integro-differential equations in their
system.

4.1 Comparison to analytic results

To compare the analytic and numerical results we show a qualitative
comparison (Fig. 2), and quantitative comparisons (Figs 3 and 4).
The former illustrates that the waves usually differ more by an
offset in phase than a difference in overall amplitude. With that
in mind, we can properly interpret the contour plots, which reveal
residuals oscillating throughout the parameter space. This suggests
that integrated quantities across either time or wavenumber would
be more accurate than these figures initially suggest.

Deep in the RD era, we see an excellent agreement with both
WK06 and DR04 as expected. Deep in the MD era on the other
hand we see that we again have good agreement with WK06, albeit
worse than before due to the matching conditions which essentially
provide the MD initial conditions. Exactly at the transition is where
the most discrepancy is seen, although the RD–MD transition is
relatively short lived (Fig. 3). The approximation by DR04 becomes
progressively worse into the MD era, since their coefficients were
derived assuming a RD Universe, accounting for the dominant part
of the residuals [Fig. 4 (a)]. We also provide Fig. 4(b), which reveals
how quickly the damping ceases once the MD era starts. Through
a comparison of the two figures therefore we can see that most of
the DR04 residuals are not from a poor modelling of damping, but
simply from not capturing the MD dynamics.

In summary, these comparisons highlight the robustness of the
analytic approximations as well as the utility of the numerical

Figure 3. Contour plots showing the difference between this work’s numer-
ical solutions and approximations given by WK06, against both wavenumber
k and conformal time η. An orange dashed line shows kη = 1. Gray dashed
lines show RD–MD transition scales, keq and k∗, as defined in Section 3.1.

solution by showing the latter can fill the gaps expected from former,
but only in specific and brief regimes.

4.2 Simple fits for the large-scale GWB

In this subsection, we will give approximate fits for the energy spec-
trum of the GWB as measured at η0 derived from the fully numerical
treatment. This approach is greatly facilitated by knowing a sensible
functional form in which to package the results, as was discussed in
Section 3.2. Expecting a spectrum that interpolates between κ−2 and
κ0 motivates a more general formula for approximating the numerical
results, which simply includes more general powers to capture the
subtleties of the RD–MD transition.8 As well as including powers
between −2 and 0, we also include an inverse cubic term,9 which
specifically in the ν damped scenario helps with the sharper increase
in the spectrum as damping ceases for low k:〈

�GW

PT

∣∣∣∣
ξ0

〉
=

(
1

2

)
D

�rel

12

(
1 + α1κ

−1 + α2κ
−3/2 + α3κ

−2 + α4κ
−3

)
,

(19)

where D is a coefficient to represent neutrino damping that we
discuss more generally in Section 5.1. The quality of this fit can be
seen in Fig. 5, with corresponding coefficients given in Table 1. For
ease of comparison, three fiducial Cosmologies have been chosen:
the first two corresponding to a best-fitting Planck 2018 Universe,
with and without neutrino damping, while the third is a simplified
cosmology neglecting both neutrinos and ��. This third cosmology
highlights how simultaneously neglecting the neutrino contribution
to the energy budget and the consequent neutrino damping will
coincidentally lead to almost correct results, departing from the full
solution by only ∼ 6 per cent. We hope by providing this fit it may be
easier to diagnose oversights in the literature (a similar cancellation of
mistakes with almost correct results will be discussed in Section 5.2).

8Other attempts included having κ−1/2, and allowing for a general power κγ .
The fit used in the main text was chosen through trial and error, showing
better results with simpler coefficients than the other functional forms.
9This term was not included in previous work (Kite et al. 2021). The changes
however are only a few per cent, and outside the scales visible to μ distortions.
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1372 T. Kite et al.

Figure 4. Contour plots showing where the presence of damping is most
important (top), and differences between this work’s numerical solutions and
approximations given by DR04 (bottom). This shows that the residuals in
the right-hand panel are mostly driven by the end of RD, with only a small
intermediate phase showing both MD and damping behaviour simultaneously.
An orange dashed line shows kη = 1. Gray dashed lines show RD–MD
transition scales, keq and k∗, as defined in Section 3.1.

By using the natural scale to define κ we yield simple values for the
α coefficients, with some implicit degree of cosmology independence
(Note the similarity between the first and third row in Table 1, once
accounting for changes in η∗).

Although only shown to k = 3 Mpc−1 here, that is sufficient to
show the limit of the GWB envelope indeed tends to �rel/12. This
is important, as the amplitude of the spectrum can be extrapolated
beyond this scale without full calculation: cosmological dependence
is imprinted at the time of horizon crossing, and so evaluating a given
solution to kη � 100 with and without some physical effect allows
one to extrapolate10 the spectrum appropriately by multiplying the

10Note that Saikawa & Shirai (2018) perform a similar extrapolation on the
transfer functions themselves using the WKB approximation.

Figure 5. A graph showing �GW/PT across k as seen at η0. Two distinct
regions are discernible: a 1/k2 slope and a flat branch, corresponding to modes
entering horizon during MD and RD, respectively. Spectra are shown for full
�CDM with and without neutrino damping, and a simplified cosmology with
� = 0, Neff = 0. The best-fitting envelopes (i.e. twice the average power) for
these cosmologies are shown with black lines, and given in Table 1.

appropriate ratio of transfer functions by �rel/12. We use this to model
the effects of changing relativistic degrees of freedom in Section 5.3,
which all occur at scales k � 103 Mpc−1.

5 A NA LY SI S O F G WB FEATURES

In this section, we discuss some of the GWB features previously
mentioned in closer detail, with specific focus on the consequences
for SD constraints on the GWB. We start with aspects of neutrino
damping, then cover the late DE domination and finish with a
discussion of the early thermal history.

5.1 Neutrino damping

By comparing the solution to equation (2) with and without the damp-
ing integral, and ignoring phase shifts of the transfer function, we can
define the damping factor D as the ratio of the amplitudes squared:(
T damped

GW

)2
≈ D

(
T free

GW

)2
. This definition mirrors that introduced in

Section 4.2, but can now be applied to a single wave of wavenumber
k. This is useful since the damping will only affect a finite range of
scales, essentially giving D ≡ D(k).

Specifically we expect D to tend to unity both for large and small
k – the former since the modes were subhorizon before neutrinos
started free-streaming, and the latter because the energy density of
neutrinos was too small to have considerable effects. The low-k shape
of D is intrinsically linked with the MD–RD transition, a moment
which was relatively recent in cosmological history. The exact low-k
dependence of D therefore does not manifest clearly in the GWB
as seen today [e.g. convergence of damped and undamped solutions
would look differently in Fig. 5 if the Universe was older/younger].
Instead we turn our attention to the shape of the damping envelope
for large k, which in contrast reveals itself clearly, as seen in Fig. 6
(for σ = 0, as introduced next). The figure shows an expected smooth
transition from the previously discussed damping constant and unity,
but with a plateau around 2 × 103 � k/Mpc−1 � 104. This feature is
associated with the energy introduced to the medium from electron-
positron annihilation (see Section 5.3), which prolongs the time at
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Clarifying transfer function approximations 1373

Table 1. Coefficients to calculate �GW/PT from equation (19) for three fiducial Cosmologies.

Cosmology D �rel η∗ α1 α2 α3 α4

�CDM free 1 9.18 × 10−5 540.44 Mpc 4.15 −4.55 11.08 −0.11
�CDM damped 0.642 9.18 × 10−5 540.44 Mpc 8.06 −8.46 17.86 −0.20
� = 0, Neff = 0 1 5.43 × 10−5 415.50 Mpc 4.17 −4.21 10.55 −0.01

Figure 6. Illustration for the damping envelope at large k. At k � 3 ×
105 Mpc−1, the envelope has essentially returned to the undamped solution,
while by k � 103 Mpc−1 the waves reach the expected D = 0.642. A
parameter σ modulates the sharpness with which the neutrino decoupling
occurs. Each increment in colour corresponds to increasing σ by 0.1. The
dashed line shows the simple approximation given in equation (21).

which the Universe has T ≈ 2 MeV, the temperature of neutrino
decoupling.

The damping integral in equation (17a) assumed an instantaneous
decoupling of the neutrinos, which leads to oscillations in the
damping envelope, as noted in WK06. A more realistic scenario can
be achieved by introducing a factor to the integrand which smoothly
tends to 0 for η < ην and to unity for η > ην , with some characteristic
width σ governing the sharpness of transition:∫ η

ην

(· · · ) −→
∫ η

0

[
1 + tanh ( η−ην

σ
)

2

]
(· · · ) . (20)

The effects of this σ are also shown in Fig. 6. Moving forward we
adopt a fiducial value of σ = 0.2ην , which quickly converges to
the correct limits without spurious oscillations. The curve can be
approximately replicated by replacing the factor of D in the second
row of Table 1 with

D(χ ) ≈ 0.642 + (1 − 0.642)
(11.08 χ )3 − (10.78 χ )2

(11.08 χ )3 − (9.41 χ )2 + 1
, (21)

where χ = k/3.5 × 105. This approximate curve is shown as a
dashed line in Fig. 6. We will see in Section 5.3 that this can be used
to replicate the entire GWB spectrum to arbitrarily large k.

Although this modified treatment of neutrino decoupling is by no
means considered accurate, it highlights an important dependence
of the precise shape of the damping envelope on the decoupling
physics. As mentioned above, a more accurate treatment including
the full decoupling, neutrino oscillations and possible neutrino
spectral distortions should be considered, is, however, beyond the
scope of this work.

The ceasing of damping effects at large k has not been included
in the calculation of spectral distortion window functions (Chluba
2014; Kite et al. 2021), meaning these have been underestimated.
With a full calculation we would see a boost in sensitivity of �
36 per cent on scales 105 � k/Mpc−1 � 108. This nearly corresponds
to a factor of two in the observing time, rendering this correction non-
trivial. However, at k � 108 Mpc−1, the effect of relativistic degrees
of freedom become more important, almost exactly canceling this
omission (again, see Section 5.3).

5.1.1 Cosmology dependence of the damping coefficient

The total amplitude of the damping carries Cosmological dependence
in the form of fν, 0 = �ν /(�γ + �ν), as defined in equation (17a),
which in turn will depend on Neff. Using the iterative procedure for
the damping contributions (see Section 4) we find a �CDM value
of D = 0.642, differing slightly from Weinberg (2004), where it
was concluded that D = 0.644 by using Neff = 3, implying fν, 0 =
0.40523. By running the solution for values 0 ≤ fν, 0 ≤ 1 we find the
fit

D = 1 − 0.45397 ζ + 0.11375 ζ 2 − 0.01904 ζ 3 + 0.00168 ζ 4 (22)

where ζ = fν, 0/0.40890. This choice of pivot value is derived from the
theoretically expected Neff = 3.046, since the current measured value
is poorly constrained to Neff = 2.99 ± 0.17 (Planck Collaboration
2018b). Inserting fν, 0 = 0.40523, we obtain D = 0.6449, which
more closely matches the value of Weinberg (2004), and matches
the D = 0.645 of DR04, based on the same fν, 0, thus confirming the
equivalence of our treatments.

5.2 Late time acceleration

The inclusion of a DE component in the Universe’s expansion
does not allow for simple analytic expressions like those given
in equation (5). Despite this, we can argue that the effects of a
cosmological constant will be small, since this component only
becomes dominant at very late times. The scale factor at which ��

matches the contribution from �m is given by

a� =
(

�m

��

)1/3

, (23)

which takes a value of a� � 3/4 with current best-fit parameters
(Planck Collaboration 2018b), a value close to today’s scale factor
a0 = 1 (e.g. see vertical lines in Fig. 2). Recalling that the effects
of cosmological expansion are imprinted on the GWB at the time
of horizon crossing, this means that only large scales which crossed
horizon recently can be impacted in spectral shape. This can be
verified with the numerical solution – where arbitrary expansion
histories are easily included – as can be seen in Fig. 7. We see that
the spectral shape is unchanged, with only specific local maxima
showing a shift of position, and most of the spectrum simply receiving
a phase shift. Sensitivity to the shifted peaks would require sensitivity
to wavelengths spanning large fractions of the observable Universe,
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1374 T. Kite et al.

Figure 7. A graph showing �GW/PT across k as seen at η0 in two different
universes: a standard �CDM and one without a cosmological constant.
Differences are only present for the smallest k values, and correspond to
phase shifts rather than a difference in fundamental spectral shape.

which even if feasible would be heavily limited by cosmic variance.
Similarly the phase shift is invisible to probes which typically average
the spectrum over one or many cycles. This suggests therefore that
late acceleration can be neglected for practical purposes.

Although the shape of the spectrum does not change significantly,
one important effect is in reducing the value of η0. In words, if
one includes late time accelerated expansion then the waves have
less time to evolve before the scale factor reaches today’s value of
a0 = 1. This means that when using the approximations given in
equation (9) one should use the wrong value η0 ≈ 15560 Mpc for
more accurate results in a full �CDM Universe. Using the correct
value of η0 ≈ 14120 Mpc gives a correspondingly younger spectrum,
and hence overall larger amplitude. This is shown in Fig. 7, where
we depict the expected limits of the analytic solution by plotting an
interpolated line of the local peaks.

Another potential cancellation of errors arises here. By inspecting
the second line in equation (15) we see that, with H0 held constant,
the fundamental dependence of the energy spectrum is ∝ η2

∗/η
4
0. A

cancellation of errors, which in fact gives the correct result to within
� 15 per cent, is to use the lower η∗ from neglecting neutrinos, with
the lower η0 from a younger late-accelerated Universe. This again
makes diagnosing discrepancies in the literature difficult, especially
if there is ambiguity between �rel and �γ .

5.3 Relativistic degrees of freedom

Accounting for the changing relativistic degrees of freedom involves
modifying the evolution of the scale factor (e.g. Watanabe & Komatsu
2006, see):

a′ = a2H0

√
g∗ρ

g∗ρ0

(
g∗s0

g∗s

)4/3

�rela−4 + �ma−3 + ��. (24)

The functions for g∗ρ and g∗s are available in pretabulated or
functional forms in Appendix A of Saikawa & Shirai (2018), together
with a much more detailed discussion of the physics at play. Here
we limit ourselves to a simple discussion which will allow the above
results to be generalized to relatively high precision with modest
modifications.

This change in the energy budget can be interpreted as a departure
from the expected ρ ∝ a−4 behaviour of relativistic fluids, but only
in specific temperature ranges where there is some change in the
thermodynamics of the plasma, e.g. during phase transitions. These
small changes in the expansion rate will be imprinted on the GWB, as
illustrated in Fig. 8, where we again numerically solved the transfer
functions with modified expansion rates. It is noteworthy that this
change in the energy budget of relativistic particles changes the exact
relation between conformal time, scale factor, and temperature.

Fortunately, the lowest frequencies impacted by changes in the
relativistic energy budget are k � 103 Mpc−1, which is deep into the
region of tensor modes which entered horizon during RD. This means
the limiting case of 〈�GW〉 = (1/2)�rel/12 in the absence of any other
physical effects can be safely extrapolated (see discussion at the end
of Section 4.2). In particular an extra factor which approximately
accounts for the changes in the relativistic degrees of freedom is
given by (Saikawa & Shirai 2018)

〈�g∗
GW〉 ≈ 〈�GW〉

(
gρ

gρ0

) (
gs0

gs

)4/3

. (25)

Using equation (25) together with the �CDM envelopes given in
Table 1 (noting that the ν damped envelope requires the modifi-
cation in equation 21) matches our numerical solution to within
� 5 per cent, however we again remind the reader of differences on
scales k ∼ 10−2 Mpc−1 and k ∼ 104 Mpc−1 studied by Saikawa &
Shirai (2018). This means that the simple fits in this paper – together
with the pretabulated g∗ functions – can model the �CDM GWB to
relatively high precision to arbitrary scales.

The g∗ effects discussed here were again neglected in previous
calculations of the spectral distortion window functions.11 If the
effects were included they would remove a similar percentage of
sensitivity as the damping effects, but over a different range of scales.
This combined with the over-extension of damping effects will lead
to almost unchanged results in Kite et al. (2021), but should be fully
accounted for in future distortion studies.

In particular, the aforementioned � 14 per cent difference at
k � 10−2 Mpc−1 will not impact the GW constraints arising from
μ distortions, but could become noticeable for the interpretation of y
distortion limits. In this case, however, we would advocate for a full
Boltzmann treatment of the photon decoupling, as discussed above
(see Section 2). The � 10 per cent difference at k � 104 Mpc−1

would have similar effects on the μ constraints. These effects are
in the tail of the SD window function (see Fig. 2 in Kite et al. 2021),
meaning the the dominant part of SDs constraining power will be
unaffected. Nevertheless, this should be acknowledged in future work
on SDs and the GWB.

6 D I SCUSSI ON AND C ONCLUSI ON

The GWB offers an exciting new window to the physics of the early
Universe, and a diverse set of probes will soon begin the search
for this new signal. In this paper we give simple yet precise large-
scale functional forms for the GWB energy density, which can aid in
estimating the efficacy of some observations. The scales considered
here are especially helpful in comparing CMB B-modes and CMB
spectral distortion measurements (as required in Kite et al. 2021).

11Note however that some of the models discussed in Kite et al. (2021)
implicitly included the g∗ effects in their energy spectra, and were thus
indirectly included in the distortion calculation. In future these should be
included in the window function itself for completeness and higher accuracy.
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Clarifying transfer function approximations 1375

Figure 8. A graph showing the GWB for an extremely wide range of scales, extending to the highest frequencies interferometry missions aim to measure, and
also the highest energy scales that known physics allow us to model. We show the onset of the effects of damping and the effects of changing relativistic degrees
of freedom. For comparison we show digitalized data from Saikawa & Shirai (2018), which matches well to the findings here.

More generally, however, any comparison between early- or late-
universe probes requires understanding of the η∗ scale for MD–RD
transition.

In this paper we endeavoured to firstly elucidate the physics at
play in the GWB in a pedagogical way, secondly to provide tools
for simple calculation of the large-scale energy spectrum, and finally
discuss the main features in the GWB with special attention on
consequences for spectral distortion calculations.

In Section 2, we qualitatively review the physical phenomena
affecting the large-scale spectrum. The most important of these is
the transition between a Universe dominated by relativistic particle
species and matter. We explicitly discuss the importance of including
neutrinos, despite the common misnomer of radiation domination.
A second important effect we discuss is that of neutrino damping via
anisotropic stress in the medium. In Section 3, we give solutions to the
transfer function valid in RD and MD respectively (see equations 9
and 10), and explain how these are matched at the transition assuming
this to be instantaneous (equation 12). These solutions give expected
limits for the energy density of the GWB (equations 15 and 16).
In Section 4, we explain how the damping can be treated through
an iterative numerical method. This method is found to give results
matching those of WK06 and DR04 in the appropriate limits (see
Fig. 2). Energy spectra as seen today are shown for various limiting
cases: with and without damping, with and without DE, with and
without neutrinos (see Figs 5 and 7). To replicate these spectra with
ease, we provide coefficients in Table 1 for use with equation (19),
which is valid to scales of k � 103 Mpc−1. Section 5 finalizes the
analysis with discussion of various GWB features: cosmological
dependence of neutrino damping, effects of late time accelerated
expansion, and changes in the number of relativistic degrees of
freedom.

The effects included in this analysis were purely standard model
Physics. More generally one would apply the techniques discussed
here to verify the avenues of discovery for new Physics hidden in the
GWB. We note that the numerical method utilized in this work can
be straightforwardly generalized to non-standard thermal histories

that transition from RD to MD and back one or more times, as is the
case in a variety of scenarios of beyond the standard model physics
(Acharya et al. 2008, 2019; Arbey et al. 2021). It can also be extended
to include the presence of other light, weakly interacting particles,
such as axions or axion-like particles in the early Universe (Marsh
2016). We defer the implementation of this to a future study.

Two of the features explored in this paper reveal inaccuracies
in previous calculations of tensor window functions, Wμ(k), used
to calculate SD amplitudes arising from primordial tensor power
spectra (e.g. Chluba et al. 2015). Previously damping has been
included, but extending to arbitrarily high k. The damping ceases to
affect the spectrum beyond k � 105 Mpc−1 (see Fig. 6). However, the
effects of the relativistic degrees of freedom were also not included
explicitly within Wμ, and would lead to consecutive over- and under-
estimations on scales k � 103 Mpc−1. Together all these changes add
to only small per cent changes, rendering the conclusions of Kite et al.
(2021) still valid. The calculation of new and more precise window
functions remains as future work, where it would be appropriate to
include the tensor perturbations within a full Boltzmann code, and
accurately model the GW-photon interaction, and thus fully capturing
the smooth decoupling of the photons, even in the post-recombination
era.
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DATA AVAILABILITY

Data in all figures available at https://doi.org/10.5281/zenodo.51417
89. A full release of the CosmoTherm code is planned for the near
future, including the GW module used here.
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