7 research outputs found

    Diffuse alveolar hemorrhage in children with interstitial lung disease: Determine etiologies!

    Get PDF
    OBJECTIVE: Diffuse alveolar hemorrhage (DAH) in children is a rare condition resulting from different underlying diseases. This study aimed at describing characteristics and diagnostic measures in children with ILD (children\u27s interstitial lung disease, chILD) and DAH to improve the diagnostic approach by increasing clinician\u27s awareness of diagnostic shortcomings. PATIENTS AND METHODS: A retrospective data analysis of patients with ILD and DAH treated in our own or collaborating centers between 01/07/1997 and 31/12/2020 was performed. Data on clinical courses and diagnostic measures were systematically retrieved as case-vignettes and investigated. To assess suitability of diagnostic software-algorithms, the Human Phenotype Ontology (HPO) was revised and expanded to optimize conditions of its associated tool the Phenomizer. RESULTS: For 97 (74%) of 131 patients, etiology of pulmonary hemorrhage was clarified. For 34 patients (26%), no underlying condition was found (termed as idiopathic pulmonary hemorrhage, IPH). Based on laboratory findings or clinical phenotype/comorbidities, 20 of these patients were assigned to descriptive clusters: IPH associated with autoimmune features (9), eosinophilia (5), renal disease (3) or multiorgan involvement (3). For 14 patients, no further differentiation was possible. CONCLUSION: Complete and sometimes repeated diagnostics are essential for establishing the correct diagnosis in children with DAH. We suggest assignment of patients with IPH to descriptive clusters, which may also guide further research. Digital tools such as the Phenomizer/HPO are promising, but need to be extended to increase diagnostic accuracy

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages

    No full text
    Many tumors evolve sophisticated strategies to evade the immune system, and these represent major obstacles for efficient antitumor immune responses. Here we explored a molecular mechanism of metabolic communication deployed by highly glycolytic tumors for immunoevasion. In contrast to colon adenocarcinomas, melanomas showed comparatively high glycolytic activity, which resulted in high acidification of the tumor microenvironment. This tumor acidosis induced Gprotein–coupled receptor–dependent expression of the transcriptional repressor ICER in tumor-associated macrophages that led to their functional polarization toward a non-inflammatory phenotype and promoted tumor growth. Collectively, our findings identify a molecular mechanism of metabolic communication between non-lymphoid tissue and the immune system that was exploited by high-glycolytic-rate tumors for evasion of the immune system

    Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages

    No full text
    Many tumors evolve sophisticated strategies to evade the immune system, and these represent major obstacles for efficient antitumor immune responses. Here we explored a molecular mechanism of metabolic communication deployed by highly glycolytic tumors for immunoevasion. In contrast to colon adenocarcinomas, melanomas showed comparatively high glycolytic activity, which resulted in high acidification of the tumor microenvironment. This tumor acidosis induced Gprotein-coupled receptor-dependent expression of the transcriptional repressor ICER in tumor-associated macrophages that led to their functional polarization toward a non-inflammatory phenotype and promoted tumor growth. Collectively, our findings identify a molecular mechanism of metabolic communication between non-lymphoid tissue and the immune system that was exploited by high-glycolytic-rate tumors for evasion of the immune system

    Analysis of Outcomes in Ischemic vs Nonischemic Cardiomyopathy in Patients With Atrial Fibrillation A Report From the GARFIELD-AF Registry

    No full text
    IMPORTANCE Congestive heart failure (CHF) is commonly associated with nonvalvular atrial fibrillation (AF), and their combination may affect treatment strategies and outcomes
    corecore