180 research outputs found
Simultaneous Softening of sigma and rho Mesons associated with Chiral Restoration
Complex poles of the unitarized pi-pi scattering amplitude in nuclear matter
are studied. Partial restoration of chiral symmetry is modeled by the decrease
of in-medium pion decay constant f*_{pi}.
For large chiral restoration (f*_{pi}/f_{pi} << 1),
2nd sheet poles in the scalar (sigma) and the vector (rho) mesons are both
dictated by the Lambert W function and show universal softening as f*_{pi}
decreases.
In-medium pi-pi cross section receives substantial contribution from the soft
mode and exhibits a large enhancement in low-energy region.
Fate of this universality for small chiral restoration (f*_{pi}/f_{pi} ~ 1)
is also discussed.Comment: 5 pages, 4-eps figures, version accepted by Phys. Rev. C (R) with
minor modification
Electromagnetic Probes
A review is presented of dilepton and real photon measurements in
relativistic heavy ion collisions over a very broad energy range from the low
energies of the BEVALAC up to the highest energies available at RHIC. The
dileptons cover the invariant mass range \mll = 0 - 2.5 GeV/c, i.e. the
continuum at low and intermediate masses and the light vector mesons, . The review includes also measurements of the light vector mesons
in elementary reactions.Comment: To be published in Landolt-Boernstein Volume 1-23A; 40 pages, 24
figures. Final version updated with small changes to the text, updated
references and updated figure
Warm stellar matter with deconfinement: application to compact stars
We investigate the properties of mixed stars formed by hadronic and quark
matter in -equilibrium described by appropriate equations of state (EOS)
in the framework of relativistic mean-field theory. We use the non- linear
Walecka model for the hadron matter and the MIT Bag and the Nambu-Jona-Lasinio
models for the quark matter. The phase transition to a deconfined quark phase
is investigated. In particular, we study the dependence of the onset of a mixed
phase and a pure quark phase on the hyperon couplings, quark model and
properties of the hadronic model. We calculate the strangeness fraction with
baryonic density for the different EOS. With the NJL model the strangeness
content in the mixed phase decreases. The calculations were performed for T=0
and for finite temperatures in order to describe neutron and proto-neutron
stars. The star properties are discussed. Both the Bag model and the NJL model
predict a mixed phase in the interior of the star. Maximum allowed masses for
proto-neutron stars are larger for the NJL model ( M)
than for the Bag model ( M).Comment: RevTeX,14 figures, accepted to publication in Physical Review
The deep propagating gravity wave experiment (deepwave): an airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere
Abstract
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.David C. Fritts, Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifffford P. Williams, P.-Dominique Pautet, Katrina Bossert, Neal R. Criddddle, Carolyn A. Reynolds, P. Alex Reinecke, Michael Uddddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, Tyler Mixa, Christopher G. Kruse, Alison D. Nugent, Campbell D. Watson, Sonja Gisinger, Steven M. Smith, Ruth S. Lieberman, Brian Laughman, James J. Moore, William O. Brown, Julie A. Haggerty, Alison Rockwell, Gregory J. Stossmeister, Steven F. Williams, Gonzalo Hernandez, Damian J. Murphy, Andrew R. Klekociuk, Iain M. Reid, and Jun M
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Light Quarks in the Instanton Vacuum at Finite Baryon Density
We consider the finite density, zero-temperature behaviour of quark matter in
the instanton picture. Since the instanton-induced interactions are attractive
in both and channels, a competition ensues between phases of
matter with condensation in either or both. It results in chiral symmetry
restoration due to the onset of diquark condensation, a `colour supercondutor',
at finite density. Also present is a state with both manners of condensation,
however this phase is found to be thermodynamically disfavoured for equilibrium
matter. Properties of quark matter in each phase are discussed, with emphasis
on the microscopic effects of the effective mass and superconducting energy
gap.Comment: 29 pages, 8 figures, LaTeX, minor typos correcte
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
- …