12 research outputs found

    A review of electrochemical impedance spectroscopy for bioanalytical sensors

    Get PDF
    Electrochemical impedance spectroscopy (EIS) is a powerful technique for both quantitative and qualitative analysis. This review uses a systematic approach to examine how electrodes are tailored for use in EIS-based applications, describing the chemistries involved in sensor design, and discusses trends in the use of bio-based and non-bio-based electrodes. The review finds that immunosensors are the most prevalent sensor strategy that employs EIS as a quantification technique for target species. The review also finds that bio-based electrodes, though capable of detecting small molecules, are most applicable for the detection of complex molecules. Non-bio-based sensors are more often employed for simpler molecules and less often have applications for complex systems. We surmise that EIS has advanced in terms of electrode designs since our last review on the subject, although there are still inconsistencies in terms of equivalent circuit modelling for some sensor types. Removal of ambiguity from equivalent circuit models may help advance EIS as a choice detection method, allowing for lower limits of detection than traditional electrochemical methods such as voltammetry or amperometry

    Twittering about research : a case study of the world's first Twitter poster competition

    Get PDF
    The Royal Society of Chemistry held, to our knowledge, the world’s first Twitter conference at 9am on February 5th, 2015. This paper reports the details of the event and discusses the outcomes, such as the potential for the use of social media to enhance scientific communication at conferences. In particular, the present work argues that social media outlets such as Twitter broaden audiences, speed up communication, and force clearer and more concise descriptions of a researcher’s work. The benefits of poster presentations are also discussed in terms of potential knowledge exchange and networking. This paper serves as a proof-of-concept approach for improving both the public opinion of the poster, and the enhancement of the poster through an innovative online format that some may feel more comfortable with, compared to face-to-face communication

    The physicochemical investigation of hydrothermally reduced textile waste and application within carbon-based electrodes.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2019-04-01, epub 2019-04-10Publication status: PublishedTextile waste is on the rise due to the expanding global population and the fast fashion market. Large volumes of textile waste are increasing the need for new methods for recycling mixed fabric materials. This paper employs a hydrothermal conversion route for a polyester/cotton mix in phosphoric acid to generate carbon materials (hydrochars) for electrochemical applications. A combination of characterization techniques revealed the reaction products were largely comprised of two major components. The first is a granular material with a surface C : O ratio of 2 : 1 interspersed with phosphorous and titanium proved using energy dispersive X-ray spectroscopy, and the other is a crystalline material with a surface C : O ratio of 3 : 2 containing no phosphorous or titanium. The latter material was found via X-ray diffraction and differential scanning calorimetry to be terephthalic acid. Electrochemical experiments conducted using the hydrochar as a carbon paste electrode demonstrates an increase in current response compared to carbon reference materials. The improved current responses, intrinsically related to the surface area of the material, could be beneficial for electrochemical sensor applications, meaning that this route holds promise for the development of a cheap recycled carbon material, using straightforward methods and simple laboratory reagents

    Detection of theophylline utilising portable electrochemical sensors

    Get PDF
    The electrochemical oxidation of theophylline (TP) is investigated utilising screen-printed electrodes. Through thorough investigation of pH, we propose a reaction mechanism, finding that the oxidation of TP is stable over a wide pH range, in particular under acidic conditions. Conversely under alkaline conditions, theophylline fouls the electrode surface. The screen-printed carbon sensors are applied towards the electroanalytical sensing of TP with a remarkable amount of success in aqueous solution at physiological pH. The screen-printed sensors have been shown to be applicable to the detection of TP at unharmful, medicinally relevant (55–110 mM), and toxic concentrations in aqueous media at physiological pH. Thus this work presents a proof-of-concept approach towards TP detection utilising sensors commonly implemented in point-of-care applications

    Improved corrosion and cavitation erosion resistance of laser-based powder bed fusion produced Ti-6Al-4V alloy by pulsed magnetic field treatment

    Get PDF
    The application of pulsed magnetic field (PMF) treatment demonstrated enhanced corrosion resistance in saline solution and prolonged resistance to cavitation erosion in deionised water for Ti-6AI-4V alloy manufactured by laser-based powder bed fusion (LPBF) and conventional wrought processing methods. The observed outcomes were attributed to the formation of a denser protective surface oxide layer and microstructural changes, resulting in a reduction of the α' phase by 0.13% and an increase in the presence of dislocations at the surface. Consequently, this led to an increase in the compressive residual stresses. Additionally, the application of this treatment resulted in the formation of highly refined and uniform precipitates, leading to a notable enhancement in microhardness by 5.73% and 5.85% for the conventionally manufactured (CM) and LPBF samples, respectively

    Twittering about research: A case study of the world’s first twitter poster competition [Version 3]

    Get PDF
    The Royal Society of Chemistry held, to our knowledge, the world’s first Twitter conference at 9am on February 5 th, 2015. The conference was a Twitter-only conference, allowing researchers to upload academic posters as tweets, replacing a physical meeting. This paper reports the details of the event and discusses the outcomes, such as the potential for the use of social media to enhance scientific communication at conferences. In particular, the present work argues that social media outlets such as Twitter broaden audiences, speed up communication, and force clearer and more concise descriptions of a researcher’s work. The benefits of poster presentations are also discussed in terms of potential knowledge exchange and networking. This paper serves as a proof-of-concept approach for improving both the public opinion of the poster, and the enhancement of the poster through an innovative online format that some may feel more comfortable with, compared to face-to-face communication

    Screen-printed back-to-back electroanalytical sensors

    Get PDF
    We introduce the concept of screen-printed back-to-back electroanalytical sensors where in this facile and generic approach, screenprinted electrodes are printed back-to-back with a common electrical connection to the two working electrodes with the counter and reference electrodes for each connected in the same manner as a normal “traditional” screen-printed sensor would be. This approach utilises the usually redundant back of the screen-printed sensor, converting this “dead-space” into a further electrochemical sensor which results in improvements in the analytical performance. In the use of the back-to-back design, the electrode area is consequently doubled with improvements in the analytical performance observed with the analytical sensitivity (gradient of a plot of peak height/ analytical signal against concentration) doubling and the corresponding limit-of-detection being reduced.We also demonstrate that through intelligent electrode design, a quadruple in the observed analytical sensitivity can also be realised when double microband electrodes are used in the back-to-back configuration as long as they are placed sufficiently apart such that no diffusional interaction occurs. Such work is generic in nature and can be facilely applied to a plethora of screen-printed (and related) sensors utilising the commonly overlooked redundant back of the electrode providing facile improvements in the electroanalytical performance

    The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes

    Get PDF
    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N0 ,N0-tetramethyl-pphenylenediamine (TMPD), b-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared ‘graphene’ inks, which have long screen ink lifetimes (43 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future

    The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes

    Get PDF
    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N0 ,N0-tetramethyl-pphenylenediamine (TMPD), b-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared ‘graphene’ inks, which have long screen ink lifetimes (43 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future

    A decade of graphene research: production, applications and outlook

    Get PDF
    Graphene research has accelerated exponentially since 2004 when graphene was isolated and characterized for the first time utilizing the ‘Scotch Tape’ method by Geim and Novoselov and given the reports of unique electronic properties that followed. The number of academic publications reporting the use of graphene was so substantial in 2013 that it equates to over 40 publications per day. With such an enormous interest in graphene it is imperative for both experts and the layman to keep up with both current graphene technology and the history of graphene technology. Consequently, this review addresses the latter point, with a primary focus upon disseminating graphene research with a more applicatory approach and the addition of our own personal graphene perspectives; the future outlook of graphene is also considered
    corecore