284 research outputs found

    Extended Formulation Lower Bounds via Hypergraph Coloring?

    Get PDF
    Exploring the power of linear programming for combinatorial optimization problems has been recently receiving renewed attention after a series of breakthrough impossibility results. From an algorithmic perspective, the related questions concern whether there are compact formulations even for problems that are known to admit polynomial-time algorithms. We propose a framework for proving lower bounds on the size of extended formulations. We do so by introducing a specific type of extended relaxations that we call product relaxations and is motivated by the study of the Sherali-Adams (SA) hierarchy. Then we show that for every approximate relaxation of a polytope P, there is a product relaxation that has the same size and is at least as strong. We provide a methodology for proving lower bounds on the size of approximate product relaxations by lower bounding the chromatic number of an underlying hypergraph, whose vertices correspond to gap-inducing vectors. We extend the definition of product relaxations and our methodology to mixed integer sets. However in this case we are able to show that mixed product relaxations are at least as powerful as a special family of extended formulations. As an application of our method we show an exponential lower bound on the size of approximate mixed product formulations for the metric capacitated facility location problem, a problem which seems to be intractable for linear programming as far as constant-gap compact formulations are concerned

    Sherali-Adams gaps, flow-cover inequalities and generalized configurations for capacity-constrained Facility Location

    Get PDF
    Metric facility location is a well-studied problem for which linear programming methods have been used with great success in deriving approximation algorithms. The capacity-constrained generalizations, such as capacitated facility location (CFL) and lower-bounded facility location (LBFL), have proved notorious as far as LP-based approximation is concerned: while there are local-search-based constant-factor approximations, there is no known linear relaxation with constant integrality gap. According to Williamson and Shmoys devising a relaxation-based approximation for \cfl\ is among the top 10 open problems in approximation algorithms. This paper advances significantly the state-of-the-art on the effectiveness of linear programming for capacity-constrained facility location through a host of impossibility results for both CFL and LBFL. We show that the relaxations obtained from the natural LP at Ω(n)\Omega(n) levels of the Sherali-Adams hierarchy have an unbounded gap, partially answering an open question of \cite{LiS13, AnBS13}. Here, nn denotes the number of facilities in the instance. Building on the ideas for this result, we prove that the standard CFL relaxation enriched with the generalized flow-cover valid inequalities \cite{AardalPW95} has also an unbounded gap. This disproves a long-standing conjecture of \cite{LeviSS12}. We finally introduce the family of proper relaxations which generalizes to its logical extreme the classic star relaxation and captures general configuration-style LPs. We characterize the behavior of proper relaxations for CFL and LBFL through a sharp threshold phenomenon.Comment: arXiv admin note: substantial text overlap with arXiv:1305.599

    Banking Union: Where does it stand? What next?

    Get PDF
    In response to the fi nancial crisis, the Eurozone pursued a number of initiatives to create a safer fi nancial sector for the single market. However, the divergent preferences between core and periphery countries and the negative legacy of the crisis have watered down ambitious reform plans for substantial risk-sharing arrangements. In this context, the Eurozone cannot strike a balance between solidarity and crisis prevention. Compared to mid-2012, the “window of opportunity” for strengthening the banking union seems closed for the moment. Paradoxically, doing reforms in fair weather is much more diffi cult, while the immediate reason for the sudden move to Banking Union was the intensifying euro sovereign crisis. As a consequence, the implemented reforms have limited scope and they leave room to fi nancial markets for a disciplining role over states

    Reforming the Greek financial system: a decade of failure

    Get PDF
    In this paper an attempt is made to describe the political economy of financial reforms in Greece. After a decade of deep crisis, Greek banks still suffer from the highest Non-Performing Loans (NPLs) ratio in the Eurozone, which occurred because of macroeconomic and bankspecific factors. However, due to the emphasis of policy makers on the macroeconomic determinants of NPLs and the contradicted incentives of the main stakeholders (bankers, politicians, regulators and investors), the need to improve the internal NPL management skills and the corporate governance of banks, both of which were poor, was neglected. As a result, the lost opportunity to restructure the Greek financial system aggravated the macroeconomic conditions for lack of a counter-cyclical lending policy

    Approximation Algorithms for Covering/Packing Integer Programs

    Get PDF
    Given matrices A and B and vectors a, b, c and d, all with non-negative entries, we consider the problem of computing min {c.x: x in Z^n_+, Ax > a, Bx < b, x < d}. We give a bicriteria-approximation algorithm that, given epsilon in (0, 1], finds a solution of cost O(ln(m)/epsilon^2) times optimal, meeting the covering constraints (Ax > a) and multiplicity constraints (x < d), and satisfying Bx < (1 + epsilon)b + beta, where beta is the vector of row sums beta_i = sum_j B_ij. Here m denotes the number of rows of A. This gives an O(ln m)-approximation algorithm for CIP -- minimum-cost covering integer programs with multiplicity constraints, i.e., the special case when there are no packing constraints Bx < b. The previous best approximation ratio has been O(ln(max_j sum_i A_ij)) since 1982. CIP contains the set cover problem as a special case, so O(ln m)-approximation is the best possible unless P=NP.Comment: Preliminary version appeared in IEEE Symposium on Foundations of Computer Science (2001). To appear in Journal of Computer and System Science
    • …
    corecore