261 research outputs found

    Constraints on the frequency and mass content of r-process events derived from turbulent mixing in galactic disks

    Full text link
    Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in their r-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early Universe. This study aims to help shed light on the impact of turbulent mixing, driven by core collapse supernovae (cc-SNe), on the r-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal mixing mechanisms at parsec scales. Our set-up includes cc-SNe feedback and enrichment from r-process sources. We find that the relative rate of the r-process events to cc-SNe is directly imprinted on the shape of the r-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g. dwarf galaxies, may require higher levels of enrichment in order to achieve similar mean r-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate of r-process elements in the MW, 6×107M/yrm˙rp4.7×104M/yr6 \times 10^{-7} {M_\odot / \rm yr} \lesssim \dot{m}_{\rm rp} \ll 4.7 \times 10^{-4} {M_\odot / \rm yr} , imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space.Comment: 20 pages, 12 figures, 3 appendices. Accepted for publication in The Astrophysical Journa

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

    Get PDF
    Background The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. Results Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. Conclusions In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.publishedVersio

    Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA) requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP) as standard method to measure body composition in Mexican adult men and women.</p> <p>Methods</p> <p>This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg) and height (Ht, cm) were obtained by standard anthropometric techniques. Resistance, R (ohms) and reactance, Xc (ohms) were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM).</p> <p>Results and Discussion</p> <p>The final model was: FFM (kg) = 0.7374 * (Ht<sup>2 </sup>/R) + 0.1763 * (BW) - 0.1773 * (Age) + 0.1198 * (Xc) - 2.4658. R<sup>2 </sup>was 0.97; the square root of the mean square error (SRMSE) was 1.99 kg, and the pure error (PE) was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg) and that measured by ADP (48.43 ± 11.3 kg). The new equation did not differ from the line of identity, had a high R<sup>2 </sup>and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg).</p> <p>Conclusion</p> <p>The new bioelectrical impedance equation based on the two-compartment model (2C) was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample.</p

    Epidemiología molecular y análisis filogenético de la infección por el virus del papiloma humano en mujeres con lesiones cervicales y cáncer en la región litoral del Ecuador

    Get PDF
    The aim of the present study was to gather information regarding the molecular epidemiology of Human papillomavirus (HPV) and related risk factors in a group of women with low- and high-grade cervical lesions and cancer from the coastal region of Ecuador. In addition, we studied the evolution of HPV variants from the most prevalent types and provided a temporal framework for their emergence, which may help to trace the source of dissemination within the region. We analyzed 166 samples, including 57 CIN1, 95 CIN2/3 and 14 cancer cases. HPV detection and typing was done by PCR-sequencing (MY09/MY11). HPV variants and estimation of the time to most recent common ancestor (tMRCA) was assessed through phylogeny and coalescence analysis. HPV DNA was found in 54.4% of CIN1, 74.7% of CIN2/3 and 78.6% of cancer samples. HPV16 (38.9%) and HPV58 (19.5%) were the most prevalent types. Risk factors for the development of cervical lesions/cancer were the following: three or more pregnancies (OR = 4.3), HPV infection (OR = 3.7 for high-risk types; OR = 3.5 for HPV16), among others. With regard to HPV evolution, HPV16 isolates belonged to lineages A (69%) and D (31%) whereas HPV58 isolates belonged only to lineage A. The period of emergence of HPV16 was in association with human populations (tMRCA = 91. 052 years for HPV16A and 27. 000 years for HPV16D), whereas HPV58A preceded Homo sapiens evolution (322. 257 years). This study provides novel data on HPV epidemiology and evolution in Ecuador, which will be fundamental in the vaccine era.Fil: Bedoya Pilozo, Cesar H.. Escuela Superior Politécnica del Litoral; Ecuador. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Medina Magües, Lex G.. Escuela Superior Politécnica del Litoral; EcuadorFil: Espinosa García, Maylen. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Sánchez, Martha. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Parrales Valdiviezo, Johanna V.. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Molina, Denisse. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Ibarra, María A.. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Quimis Ponce, María. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: España, Karool. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Párraga Macias, Karla E.. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Cajas Flores, Nancy V.. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Solon, Orlando A.. Instituto Nacional de Investigaciones en Salud Pública; Ecuador. Universidad Agraria del Ecuador; EcuadorFil: Robalino Penaherrera, Jorge A.. Instituto Nacional de Investigaciones en Salud Pública; EcuadorFil: Chedraui, Peter. Hospital Gineco-Obstétrico Enrique C. Sotomayor; EcuadorFil: Escobar, Saul. Universidad Católica de Guayaquil; EcuadorFil: Loja Chango, Rita D.. Universidad Católica de Guayaquil; EcuadorFil: Ramirez Morán, Cecibel. Universidad Católica de Guayaquil; EcuadorFil: Espinoza Caicedo, Jasson. Universidad Católica de Guayaquil; EcuadorFil: Sánchez Giler, Sunny. Universidad Especialidades Espíritu Santo. Facultad de Ciencias Médicas; EcuadorFil: Limia, Celia M.. Instituto de Medicina Tropical Pedro Kouri; CubaFil: Alemán, Yoan. Instituto de Medicina Tropical Pedro Kouri; CubaFil: Soto, Yudira. Instituto de Medicina Tropical Pedro Kouri; CubaFil: Kouri, Vivian. Instituto de Medicina Tropical Pedro Kouri; CubaFil: Culasso, Andrés Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Virología; ArgentinaFil: Badano, Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Secretaría de Educación Superior, Ciencia, Tecnología e Innovación; Ecuador. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Laboratorio de Biología Molecular Aplicada; Argentin

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)

    WW Domains of the Yes-Kinase-Associated-Protein (YAP) Transcriptional Regulator Behave as Independent Units with Different Binding Preferences for PPxY Motif-Containing Ligands

    Get PDF
    YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.This work was supported by the Spanish Ministry of Education and Science [grant BIO2009-13261-CO2], the Spanish Ministry of Economy and Competitivity [grant BIO2012-39922-CO2] including FEDER (European Funds for Regional Development) funds and the Governement of Andalusia [grant CVI-5915]. Marius Sudol was supported by PA Breast Cancer Coalition Grants (#60707 and #920093) plus the Geisinger Clinic

    Undersea Constellations: The Global Biology of an Endangered Marine Megavertebrate Further Informed through Citizen Science

    Get PDF
    The whale shark is an ideal flagship species for citizen science projects because of its charismatic nature, its size, and the associated ecotourism ventures focusing on the species at numerous coastal aggregation sites. An online database of whale shark encounters, identifying individuals on the basis of their unique skin patterning, captured almost 30,000 whale shark encounter reports from 1992 to 2014, with more than 6000 individuals identified from 54 countries. During this time, the number of known whale shark aggregation sites (hotspots) increased from 13 to 20. Examination of photo-identification data at a global scale revealed a skewed sex-ratio bias toward males (overall, more than 66%) and high site fidelity among individuals, with limited movements of sharks between neighboring countries but no records confirming large, ocean basin-scale migrations. Citizen science has been vital in amassing large spatial and temporal data sets to elucidate key aspects of whale shark life history and demographics and will continue to provide substantial long-term value

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore