99 research outputs found

    Bounds on Low Scale Gravity from RICE data and Cosmogenic Neutrino Flux Models

    Full text link
    We explore limits on low scale gravity models set by results from the Radio Ice Cherenkov Experiment's (RICE) ongoing search for cosmic ray neutrinos in the cosmogenic, or GZK, energy range. The bound on M_D, the fundamental scale of gravity, depends upon cosmogenic flux model, black hole formation and decay treatments, inclusion of graviton mediated elastic neutrino processes, and the number of large extra dimensions, d. Assuming proton-based cosmogenic flux models that cover a broad range of flux possibilities, we find bounds in the interval 0.9 TeV <M_D< 10 TeV. Heavy nucleus-based models generally lead to smaller fluxes and correspondingly weaker bounds. Values d = 5, 6 and 7, for which laboratory and astrophysical bounds on LSG models are less restrictive, lead to essentially the same limits on M_D.Comment: Case with heavy-nucleus-based neutrino fluxes added; references added; 9 pages, 3 figs., submitted to Phys. Lett.

    The Particle Physics Reach of High-Energy Neutrino Astronomy

    Full text link
    We discuss the prospects for high-energy neutrino astronomy to study particle physics in the energy regime comparable to and beyond that obtainable at the current and planned colliders. We describe the various signatures of high-energy cosmic neutrinos expected in both neutrino telescopes and air shower experiments and discuss these measurements within the context of theoretical models with a quantum gravity or string scale near a TeV, supersymmetry and scenarios with interactions induced by electroweak instantons. We attempt to access the particle physics reach of these experiments.Comment: Mini-review article for New Journal of Physics, "Focus on Neutrinos" issue. 27 pages, 11 figure

    Ergodic infinite group extensions of geodesic flows on translation surfaces

    Full text link
    We show that generic infinite group extensions of geodesic flows on square tiled translation surfaces are ergodic in almost every direction, subject to certain natural constraints. Recently K. Fr\c{a}czek and C. Ulcigrai have shown that certain concrete staircases, covers of square-tiled surfaces, are not ergodic in almost every direction. In contrast we show the almost sure ergodicity of other concrete staircases. An appendix provides a combinatorial approach for the study of square-tiled surfaces

    Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC × GC-MS) is a powerful technique which has gained increasing attention over the last two decades. The GC × GC-MS provides much increased separation capacity, chemical selectivity and sensitivity for complex sample analysis and brings more accurate information about compound retention times and mass spectra. Despite these advantages, the retention times of the resolved peaks on the two-dimensional gas chromatographic columns are always shifted due to experimental variations, introducing difficulty in the data processing for metabolomics analysis. Therefore, the retention time variation must be adjusted in order to compare multiple metabolic profiles obtained from different conditions.</p> <p>Results</p> <p>We developed novel peak alignment algorithms for both homogeneous (acquired under the identical experimental conditions) and heterogeneous (acquired under the different experimental conditions) GC × GC-MS data using modified Smith-Waterman local alignment algorithms along with mass spectral similarity. Compared with literature reported algorithms, the proposed algorithms eliminated the detection of landmark peaks and the usage of retention time transformation. Furthermore, an automated peak alignment software package was established by implementing a likelihood function for optimal peak alignment.</p> <p>Conclusions</p> <p>The proposed Smith-Waterman local alignment-based algorithms are capable of aligning both the homogeneous and heterogeneous data of multiple GC × GC-MS experiments without the transformation of retention times and the selection of landmark peaks. An optimal version of the SW-based algorithms was also established based on the associated likelihood function for the automatic peak alignment. The proposed alignment algorithms outperform the literature reported alignment method by analyzing the experiment data of a mixture of compound standards and a metabolite extract of mouse plasma with spiked-in compound standards.</p

    Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives

    Get PDF
    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided

    Corrigendum: A systematic review and economic evaluation of bisphosphonates for the prevention of fragility fractures

    Get PDF
    Abstract Background Fragility fractures are fractures that result from mechanical forces that would not ordinarily result in fracture. Objectives To evaluate the clinical effectiveness and safety of bisphosphonates [alendronic acid (Fosamax® and Fosamax® Once Weekly, Merck Sharp & Dohme Ltd), risedronic acid (Actonel® and Actonel Once a Week®, Warner Chilcott UK Ltd), ibandronic acid (Bonviva®, Roche Products Ltd) and zoledronic acid (Aclasta®, Novartis Pharmaceuticals UK Ltd)] for the prevention of fragility fracture and to assess their cost-effectiveness at varying levels of fracture risk. Data sources For the clinical effectiveness review, six electronic databases and two trial registries were searched: MEDLINE, EMBASE, The Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Web of Science and BIOSIS Previews, Clinicaltrials.gov and World Health Organization International Clinical Trials Registry Platform. Searches were limited by date from 2008 until September 2014. Review methods A systematic review and network meta-analysis (NMA) of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. Discrete event simulation was used to estimate lifetime costs and quality-adjusted life-years (QALYs) for each bisphosphonate treatment strategy and a strategy of no treatment for a simulated cohort of patients with heterogeneous characteristics. The model was populated with effectiveness evidence from the systematic review and NMA. All other parameters were estimated from published sources. A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Fracture risk was estimated from patient characteristics using the QFracture® (QFracture-2012 open source revision 38, Clinrisk Ltd, Leeds, UK) and FRAX® (web version 3.9, University of Sheffield, Sheffield, UK) tools. The relationship between fracture risk and incremental net benefit (INB) was estimated using non-parametric regression. Probabilistic sensitivity analysis (PSA) and scenario analyses were used to assess uncertainty. Results Forty-six randomised controlled trials (RCTs) were included in the clinical effectiveness systematic review, with 27 RCTs providing data for the fracture NMA and 35 RCTs providing data for the femoral neck bone mineral density (BMD) NMA. All treatments had beneficial effects on fractures versus placebo, with hazard ratios varying from 0.41 to 0.92 depending on treatment and fracture type. The effects on vertebral fractures and percentage change in BMD were statistically significant for all treatments. There was no evidence of a difference in effect on fractures between bisphosphonates. A statistically significant difference in the incidence of influenza-like symptoms was identified from the RCTs for zoledronic acid compared with placebo. Reviews of observational studies suggest that upper gastrointestinal symptoms are frequently reported in the first month of oral bisphosphonate treatment, but pooled analyses of placebo-controlled trials found no statistically significant difference. A strategy of no treatment was estimated to have the maximum INB for patients with a 10-year QFracture risk under 1.5%, whereas oral bisphosphonates provided maximum INB at higher levels of risk. However, the PSA suggested that there is considerable uncertainty regarding whether or not no treatment is the optimal strategy until the QFracture score is around 5.5%. In the model using FRAX, the mean INBs were positive for all oral bisphosphonate treatments across all risk categories. Intravenous bisphosphonates were estimated to have lower INBs than oral bisphosphonates across all levels of fracture risk when estimated using either QFracture or FRAX. Limitations We assumed that all treatment strategies are viable alternatives across the whole population. Conclusions Bisphosphonates are effective in preventing fragility fractures. However, the benefit-to-risk ratio in the lowest-risk patients may be debatable given the low absolute QALY gains and the potential for adverse events. We plan to extend the analysis to include non-bisphosphonate therapies. Study registration This study is registered as PROSPERO CRD42013006883. Funding The National Institute for Health Research Health Technology Assessment programme

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    Development of proteomic and metabolomic tools for application in aquatic invertebrate ecotoxicological research

    No full text
    As a result of intensive use, atrazine is one of the most commonly detected contaminants in surface waters in the Midwestern United States. Atrazine and two of its primary metabolites, desethylatrazine (DEA) and deisopropylatrazine (DIA), are routinely detected in aqueous systems throughout this area. Although research has been conducted on the toxicity of atrazine, limited information exists regarding the toxicity of DEA and DIA. Also, there is no information on the toxicity of atrazine to Diporeia spp., a keystone Great Lakes species under severe decline. We individually evaluated the acute and chronic toxicity of atrazine, DEA, and DIA on the amphipods H. azteca and Diporeia spp., and the unicellular algae Pseudokirchneriella subcapitata We also studied the sublethal effects of chronically exposed H. azteca to atrazine and DEA. Proteomic and metabolomic profiles of chronically exposed H. azteca and Diporeia spp. were studied in order to determine novel biomarkers of exposure and endocrine disrupting effects in freshwater amphipods. We found all concentration values that elicited 50% mortality (LC50) values were well above those reported to impact aquatic organisms and they were ranked atrazine \u3e DEA \u3e DIA. However, Diporeia spp. appears to be more sensitive to exposure to these chemicals compared to H. azteca. Identified proteins and metabolites suggest atrazine and its metabolites disrupt mitochondrial function. It also appears that glucuronidation may be utilized to detoxify atrazine in amphipods. Finally, our results do suggest hormonal disruptions in atrazine and DEA exposed amphipods. However, endocrine disrupting effects were never confirmed. This is the first study to use metabolomics and proteomics to study this phenomenon. Our results indicate that DEA and DIA should be utilized in atrazine risk assessments to avoid underestimating the impacts of atrazine on aquatic species
    corecore