2,127 research outputs found

    Local Voids as the Origin of Large-angle Cosmic Microwave Background Anomalies: The Effect of a Cosmological Constant

    Get PDF
    We explore the large angular scale temperature anisotropies in the cosmic microwave background (CMB) due to homogeneous local dust-filled voids in a flat Friedmann-Robertson-Walker universe with a cosmological constant. In comparison with the equivalent dust-filled void model in the Einstein-de Sitter background, we find that the anisotropy for compensated asymptotically expanding local voids can be larger because second-order effects enhance the linear integrated Sachs-Wolfe (ISW) effect. However, for local voids that expand sufficiently faster than the asymptotic velocity of the wall, the second-order effect can suppress the fluctuation due to the linear ISW effect. A pair of quasi-linear compensated asymptotic local voids with radius (2-3)*10^2 ~h^{-1} Mpc and a matter density contrast ~-0.3 can be observed as cold spots with a temperature anisotropy Delta T/T~O(10^{-5}) that might help explain the observed large-angle CMB anomalies. We predict that the associated anisotropy in the local Hubble constant in the direction of the voids could be as large as a few percent.Comment: 23 pages, 5 figures, version accepted for publication in ApJ with minor revisio

    A Comparison of Small Signal Modulation Parameter Extraction Techniques for Vertical-Cavity, Surface-Emitting Lasers

    Get PDF
    The small signal modulation characteristics of a vertical-cavity, surface-emitting laser (VCSEL) are determined using three different measurements: relative intensity noise, frequency response, and high resolution optical spectra. The resonant and damping frequencies were measured, and related rate equation parameters were extracted; excellent agreement was found both between experiment and theory, and amongst the different measurement techniques. The results and procedures are compared, and the findings are presented below

    Local Voids as the Origin of Large-angle Cosmic Microwave Background Anomalies I

    Full text link
    We explore the large angular scale temperature anisotropies in the cosmic microwave background due to expanding homogeneous local voids at redshift z~1. A compensated spherically symmetric homogeneous dust-filled void with radius \~3*10^2 h^{-1}Mpc, and density contrast ~-0.3 can be observed as a cold spot with a temperature anisotropy -1*10^{-5} surrounded by a slightly hotter ring. We find that a pair of these circular cold spots separated by ~50 degree can account both for the planarity of the octopole and for the alignment between the quadrupole and the octopole in the cosmic microwave background (CMB) anisotropy. The cold spot in the Galactic southern hemisphere which is anomalous at the ~3sigma level can be explained by such a large void at z~1. The observed north-south asymmetry in the large-angle CMB power can be attributed to the asymmetric distribution of these local voids between the two hemispheres. The statistical significance of the low quadrupole is further reduced in this interpretation of the large angular scale CMB anomalies.Comment: 8 pages, 5 eps files, Version accepted for ApJ. New maps for non-overlapping voids (Fig. 4) is adde

    The mechanism of caesium intercalation of graphene

    Get PDF
    Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers, but the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali-atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also play a role for intercalation of layered materials.Comment: 8 pages, 7 figures in published form, supplementary information availabl

    A status report on the observability of cosmic bubble collisions

    Full text link
    In the picture of eternal inflation as driven by a scalar potential with multiple minima, our observable universe resides inside one of many bubbles formed from transitions out of a false vacuum. These bubbles necessarily collide, upsetting the homogeneity and isotropy of our bubble interior, and possibly leading to detectable signatures in the observable portion of our bubble, potentially in the Cosmic Microwave Background or other precision cosmological probes. This constitutes a direct experimental test of eternal inflation and the landscape of string theory vacua. Assessing this possibility roughly splits into answering three questions: What happens in a generic bubble collision? What observational effects might be expected? How likely are we to observe a collision? In this review we report the current progress on each of these questions, improve upon a few of the existing results, and attempt to lay out directions for future work.Comment: Review article; comments very welcome. 24 pages + 4 appendices; 19 color figures. (Revised version adds two figures, minor edits.

    Simple Thermal Model for Vertical-Cavity, Surface-Emitting Lasers

    Get PDF
    A simple, multi-mode rate equation-based thermal model has been developed for vertical-cavity, surface emitting lasers. The misalignment between cavity supported modes and the material gain peak is considered to be the primary casue of the higher order transverse modes and power rolloff observed in these devices. Experiments are performed on a Mode 8085-2008 VCSEL to determine its modal composition over a range of currents and temperatures. The rate equation model was fitted to these modally resolved light current curves with good success

    Synapse efficiency diverges due to synaptic pruning following over-growth

    Full text link
    In the development of the brain, it is known that synapses are pruned following over-growth. This pruning following over-growth seems to be a universal phenomenon that occurs in almost all areas -- visual cortex, motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-growth, and analytically show that the synapse efficiency diverges as O(log c) at the limit where connecting rate c is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maximize memory performance, exists.Comment: 15 pages, 16 figure

    Optimization of Organic Light Emitting Diode Structures

    Get PDF
    In this work we present detailed analysis of the emitted radiation spectrum from tris(8-hydroxyquinoline) aluminum (Alq3) based OLEDs as a function of: the choice of cathode, the thickness of organic layers, and the position of the hole transport layer/Alq3 interface. The calculations fully take into account dispersion in glass substrate, indium tin oxide anode, and in the organic layers, as well as the dispersion in the metal cathode. Influence of the incoherent transparent substrate (1 mm glass substrate) is also fully accounted for. Four cathode structures have been considered: Mg/Ag, Ca/Ag, LiF/Al, and Ag. For the hole transport layer, N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) was considered. As expected, emitted radiation is strongly dependent on the position of the emissive layer inside the cavity and its distance from the metal cathode. Although our optical model for an OLED does not explicitly include exciton quenching in vicinity of the metal cathode, designs placing emissive layer near the cathode are excluded to avoid unrealistic results. Guidelines for designing devices with optimum emission efficiency are presented. Finally, the optimized devices were fabricated and characterized and experimental and calculated emission spectra were compared

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases

    Improvement of the chondrocyte-specific phenotype upon equine bone marrow mesenchymal stem cell differentiation. Influence of TGF-ß1 or TGF-ß3, associated with BMP-2 and type I collagen siRNAs

    Get PDF
    International audienceArticular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Consequently, cartilage markers, such as type II collagen, are degraded whereas atypic molecules, such as type I collagen, are newly synthetized. Another essential phenomenon occurring in OA is the upregulation of HtrA1, a serine protease targeting upstream receptors of signalling pathways involved in the synthesis of articular cartilage markers. OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. The aim of this study is to improve the autologous chondrocyte implantation strategy by enhancing the chondrogenic differentiation of mesenchymal stem cells (MSCs) in order to increase the type II collagen/ type I collagen ratio
    corecore