76 research outputs found
A Stress Surveillance System Based on Calcium and Nitric Oxide in Marine Diatoms
Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based defense strategies. Here, we demonstrate how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms. In particular, the aldehyde (2E,4E/Z)-decadienal (DD) can trigger intracellular calcium transients and the generation of nitric oxide (NO) by a calcium-dependent NO synthase-like activity, which results in cell death. However, pretreatment of cells with sublethal doses of aldehyde can induce resistance to subsequent lethal doses, which is reflected in an altered calcium signature and kinetics of NO production. We also present evidence for a DD–derived NO-based intercellular signaling system for the perception of stressed bystander cells. Based on these findings, we propose the existence of a sophisticated stress surveillance system in diatoms, which has important implications for understanding the cellular mechanisms responsible for acclimation versus death during phytoplankton bloom successions
A NEW STRATEGIC WAVE MEASUREMENT STATION OFF NAPLES PORT MAIN BREAKWATER
The accuracy of directional wave spectra sensors is crucial for obtaining accurate forecasts of ocean and coastal wave conditions for scientific and engineering applications. In this paper, a newly designed, low-cost GPS-based wave buoy, called the Directional Wave Spectra Drifter (DWSD), is presented. A field test campaign was conducted at the Gulf of Naples, Italy with the goal of comparing the directional wave properties obtained with the DWSD and with a nearly co-located bottom-mounted Acoustic Doppler Current Profiler (ADCP) from Teledyne RD-Instruments. The comparison shows a very good agreement between the two methodologies. The reliability of this innovative instrument and its low costs allow a large variety of applications, including the implementation of a global, satellite-linked, real-time open-ocean network of drifting directional wave spectra sensors and monitoring the sea-state in harbors to aid ship transit and for planning coastal and offshore constructions. The DWSD is currently in use to better constrain the wave energy climatology with the goal of optimizing the design of a full-scale prototype Wave Energy Converter (WEC) in the port of Naples, Italy
Quantification of Dissolved and Particulate Polyunsaturated Aldehydes in the Adriatic Sea
Polyunsaturated aldehydes (PUA) are supposed to play critical roles in chemically-mediated plankton interactions. Laboratory studies suggest that they act as mediators of chemical defense and chemical communication. PUA are oxylipins containing an α,β,γ,δ–unsaturated aldehyde structure element and are mainly found in diatoms. We present here a detailed surface mapping of PUA during a spring bloom of the diatom Skeletonema marinoi in the Adriatic Sea. We monitored dissolved PUA, as well as particulate PUA, which are produced by phytoplankton after cell disintegration. Our survey revealed a patchy distribution of PUA and shows that at most stations S. marinoi is the major contributor to the overall PUA. Our data also suggest that lysis of a diatom bloom can contribute significantly to the dissolved PUA concentrations and that other producers, which are smaller in cell size compared to diatoms, have to be taken into account as well if the total PUA content of marine samples is considered. The analyses of samples collected in deeper water suggests that diatom contribution to PUA decreases with depth, while smaller-sized unidentified organisms take place as dominant contributors to the PUA concentrations
Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom
Microalgae play a major role as primary producers in aquatic ecosystems. Cell signalling regulates their interactions with the environment and other organisms, yet this process in phytoplankton is poorly defined. Using the marine planktonic diatom Pseudo-nitzschia multistriata, we investigated the cell response to cues released during sexual reproduction, an event that demands strong regulatory mechanisms and impacts on population dynamics. We sequenced the genome of P. multistriata and performed phylogenomic and transcriptomic analyses, which allowed the definition of gene gains and losses, horizontal gene transfers, conservation and evolutionary rate of sex-related genes. We also identified a small number of conserved noncoding elements. Sexual reproduction impacted on cell cycle progression and induced an asymmetric response of the opposite mating types. G protein-coupled receptors and cyclic guanosine monophosphate (cGMP) are implicated in the response to sexual cues, which overall entails a modulation of cell cycle, meiosis-related and nutrient transporter genes, suggesting a fine control of nutrient uptake even under nutrient-replete conditions. The controllable life cycle and the genome sequence of P. multistriata allow the reconstruction of changes occurring in diatoms in a key phase of their life cycle, providing hints on the evolution and putative function of their genes and empowering studies on sexual reproduction
Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom
Microalgae play a major role as primary producers in aquatic ecosystems. Cell signalling regulates their interactions with the environment and other organisms, yet this process in phytoplankton is poorly defined. Using the marine planktonic diatom Pseudo-nitzschia multistriata, we investigated the cell response to cues released during sexual reproduction, an event that demands strong regulatory mechanisms and impacts on population dynamics. We sequenced the genome of P. multistriata and performed phylogenomic and transcriptomic analyses, which allowed the definition of gene gains and losses, horizontal gene transfers, conservation and evolutionary rate of sex-related genes. We also identified a small number of conserved noncoding elements. Sexual reproduction impacted on cell cycle progression and induced an asymmetric response of the opposite mating types. G protein-coupled receptors and cyclic guanosine monophosphate (cGMP) are implicated in the response to sexual cues, which overall entails a modulation of cell cycle, meiosis-related and nutrient transporter genes, suggesting a fine control of nutrient uptake even under nutrient-replete conditions. The controllable life cycle and the genome sequence of P. multistriata allow the reconstruction of changes occurring in diatoms in a key phase of their life cycle, providing hints on the evolution and putative function of their genes and empowering studies on sexual reproduction
The mediterranean sea we want
open58siThis paper presents major gaps and challenges for implementing the UN Decade of Ocean Science for Sustainable Development (2021-2030) in the Mediterranean region. The authors make recommendations on the scientific knowledge needs and co-design actions identified during two consultations, part of the Decade preparatory-phase, framing them in the Mediterranean Sea’s unique environmental and socio-economic perspectives. According to the ‘Mediterranean State of the Environment and Development Report 2020’ by the United Nations Environment Programme Mediterranean Action Plan and despite notable progress, the Mediterranean region is not on track to achieve and fully implement the Sustainable Development Goals of Agenda 2030. Key factors are the cumulative effect of multiple human-induced pressures that threaten the ecosystem resources and services in the global change scenario. The basin, identified as a climate change vulnerability hotspot, is exposed to pollution and rising impacts of climate change. This affects mainly the coastal zones, at increasing risk of extreme events and their negative effects of unsustainable management of key economic assets. Transitioning to a sustainable blue economy is the key for the marine environment’s health and the nourishment of future generations. This challenging context, offering the opportunity of enhancing the knowledge to define science-based measures as well as narrowing the gaps between the Northen and Southern shores, calls for a joint (re)action. The paper reviews the state of the art of Mediterranean Sea science knowledge, sets of trends, capacity development needs, specific challenges, and recommendations for each Decade’s societal outcome. In the conclusions, the proposal for a Mediterranean regional programme in the framework of the Ocean Decade is addressed. The core objective relies on integrating and improving the existing ocean-knowledge, Ocean Literacy, and ocean observing capacities building on international cooperation to reach the “Mediterranean Sea that we want”.openCappelletto M.; Santoleri R.; Evangelista L.; Galgani F.; Garces E.; Giorgetti A.; Fava F.; Herut B.; Hilmi K.; Kholeif S.; Lorito S.; Sammari C.; Lianos M.C.; Celussi M.; D'alelio D.; Francocci F.; Giorgi G.; Canu D.M.; Organelli E.; Pomaro A.; Sannino G.; Segou M.; Simoncelli S.; Babeyko A.; Barbanti A.; Chang-Seng D.; Cardin V.; Casotti R.; Drago A.; Asmi S.E.; Eparkhina D.; Fichaut M.; Hema T.; Procaccini G.; Santoro F.; Scoullos M.; Solidoro C.; Trincardi F.; Tunesi L.; Umgiesser G.; Zingone A.; Ballerini T.; Chaffai A.; Coppini G.; Gruber S.; Knezevic J.; Leone G.; Penca J.; Pinardi N.; Petihakis G.; Rio M.-H.; Said M.; Siokouros Z.; Srour A.; Snoussi M.; Tintore J.; Vassilopoulou V.; Zavatarelli M.Cappelletto M.; Santoleri R.; Evangelista L.; Galgani F.; Garces E.; Giorgetti A.; Fava F.; Herut B.; Hilmi K.; Kholeif S.; Lorito S.; Sammari C.; Lianos M.C.; Celussi M.; D'alelio D.; Francocci F.; Giorgi G.; Canu D.M.; Organelli E.; Pomaro A.; Sannino G.; Segou M.; Simoncelli S.; Babeyko A.; Barbanti A.; Chang-Seng D.; Cardin V.; Casotti R.; Drago A.; Asmi S.E.; Eparkhina D.; Fichaut M.; Hema T.; Procaccini G.; Santoro F.; Scoullos M.; Solidoro C.; Trincardi F.; Tunesi L.; Umgiesser G.; Zingone A.; Ballerini T.; Chaffai A.; Coppini G.; Gruber S.; Knezevic J.; Leone G.; Penca J.; Pinardi N.; Petihakis G.; Rio M.-H.; Said M.; Siokouros Z.; Srour A.; Snoussi M.; Tintore J.; Vassilopoulou V.; Zavatarelli M
The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field
Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality
Caratterizzazione e risposte ecofisiologiche delle comunita' ultraplanctoniche del Golfo di Napoli e del Canale di Sicilia tramite citometria a flusso
Dottorato di ricerca in scienze ambientali: ambiente marino e risorse. 12. ciclo. A.a 1996-99. Coordinatore E. De Domenico. Tutore Letterio Guglielmo. Co-tutore Maurizio Ribera d'Alcala'Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms
9 pages, 4 figures, 2 tablesPolyunsaturated aldehydes (PUAs), produced as secondary metabolites by diatoms, have been shown to induce toxic effects on a variety of organisms, including copepods and phyto- and bacterioplankton. However, the nature of and the players in this interaction remain poorly understood. We tested the effect of 3 PUAs commonly produced by marine diatoms—2E,4E/Z-heptadienal (HEPTA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-decadienal (DECA) and a mix of HEPTA and OCTA (MIX)—on a natural bacterial community from a coastal area of the NW Mediterranean Sea (Blanes Bay, Spain). Little effect on total or relative cell abundance or bulk bacterial production was observed after 6 or 24 h exposure to 7.5 nM of the 3 different PUAs for the different bacterial phylogenetic groups (Gammaproteobacteria, Bacteroidetes, Rhodobacteraceae and SAR11), assessed by catalysed reporter deposition (CARD)-fluorescence in situ hybridisation (FISH). Metabolic activity, i.e. single-cell activity as determined by microautoradiography combined with CARD-FISH (MAR-CARD-FISH), was least affected by the addition of single PUAs in Gammaproteobacteria, markedly in Bacteroidetes and most markedly in Rhodobacteraceae, leading to a decrease in Rhodobacteraceae abundance by 21% (by 38% of the active cells assessed by leucine uptake) compared to the control. Bacteroidetes, although markedly affected in single-cell activity, were the most abundant group (54% of total cell counts). The addition of a mixture of OCTA and HEPTA produced a more pronounced decrease in the metabolic activity of all groups than the incubation with the single PUAs, suggesting a synergistic effect. Our results demonstrate that PUAs have a differential effect on the single-cell activity of distinct bacterial groups in natural communities. PUAs may therefore play an important role in shaping bacterial community composition by conferring a competitive advantage to PUA-resistant groups, allowing them to preferentially use the organic matter released by diatomsThe project was carried out within the framework and with the support of MarBEF (Network of Excellence in Marine Biodiversity and Ecosystem Functioning). J.M.G. was supported by grants SUMMER (CTM2008-03309/MAR) and STORM (CTM2009-09352/MAR)Peer reviewe
- …