149 research outputs found

    Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    Get PDF
    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.National Institutes of Health (U.S.) (NIH Grant NHGRI-HG003079)National Institute of Allergy and Infectious Diseases (U.S.) (Grant HHSN272200900039C)Seventh Framework Programme (European Commission) (Marie Curie PIOF-GA-2011-303312

    Semiautonomous Group and quality of life in the work in a Portuguese company

    Get PDF
    Um Grupo SemiAutónomo tem uma estrutura que pode afetar o comportamento dos seus colaboradores. Neste estudo qualitativo, realizamos a avaliação da Qualidade de Vida no trabalho de colaboradores de uma pequena empresa portuguesa, tendo como apoio o modelo de Hackman e Oldham. Pretende-se identificar as ações e opções de gestão que contribuem para a melhoria da Qualidade de Vida no Trabalho. / A Semi Autonomous Group has a structure that can affect the behavior of its employees. In this qualitative study, we carried out the evaluation of the Quality of Life in the work of employees of a small Portuguese company, taking into consideration Hackman’s and Oldham’s model. It is intended to identify actions and management options that contribute to the improvement of Quality of Life

    Novel CaLB-like Lipase Found Using ProspectBIO, a Software for Genome-Based Bioprospection

    Get PDF
    Enzymes have been highly demanded in diverse applications such as in the food, pharmaceutical, and industrial fuel sectors. Thus, in silico bioprospecting emerges as an efficient strategy for discovering new enzyme candidates. A new program called ProspectBIO was developed for this purpose as it can find non-annotated sequences by searching for homologs of a model enzyme directly in genomes. Here we describe the ProspectBIO software methodology and the experimental validation by prospecting for novel lipases by sequence homology to Candida antarctica lipase B (CaLB) and conserved motifs. As expected, we observed that the new bioprospecting software could find more sequences (1672) than a conventional similarity-based search in a protein database (733). Additionally, the absence of patent protection was introduced as a criterion resulting in the final selection of a putative lipase-encoding gene from Ustilago hordei (UhL). Expression of UhL in Pichia pastoris resulted in the production of an enzyme with activity towards a tributyrin substrate. The recombinant enzyme activity levels were 4-fold improved when lowering the temperature and increasing methanol concentrations during the induction phase in shake-flask cultures. Protein sequence alignment and structural modeling showed that the recombinant enzyme has high similarity and capability of adjustment to the structure of CaLB. However, amino acid substitutions identified in the active pocket entrance may be responsible for the differences in the substrate specificities of the two enzymes. Thus, the ProspectBIO software allowed the finding of a new promising lipase for biotechnological application without the need for laborious and expensive conventional bioprospecting experimental steps

    Legitimising Emerging Power Diplomacy: an Analysis of Government and Media Discourses on Brazilian Foreign Policy under Lula

    Full text link

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Guillain-Barré syndrome during the Zika virus outbreak in Northeast Brazil: An observational cohort study

    Get PDF
    Objective: To determine the clinical phenotype of Guillain-Barré syndrome (GBS) after Zika virus (ZIKV) infection, the anti-glycolipid antibody signature, and the role of other circulating arthropod-borne viruses, we describe a cohort of GBS patients identified during ZIKV and chikungunya virus (CHIKV) outbreaks in Northeast Brazil. Methods: We prospectively recruited GBS patients from a regional neurology center in Northeast Brazil between December 2014 and February 2017. Serum and CSF were tested for ZIKV, CHIKV, and dengue virus (DENV), by RT-PCR and antibodies, and serum was tested for GBS-associated antibodies to glycolipids. Results: Seventy-one patients were identified. Forty-eight (68%) had laboratory evidence of a recent arbovirus infection; 25 (52%) ZIKV, 8 (17%) CHIKV, 1 (2%) DENV, and 14 (29%) ZIKV and CHIKV. Most patients with a recent arbovirus infection had motor and sensory symptoms (72%), a demyelinating electrophysiological subtype (67%) and a facial palsy (58%). Patients with a recent infection with ZIKV and CHIKV had a longer hospital admission and more frequent mechanical ventilation compared to the other patients. No specific anti-glycolipid antibody signature was identified in association with arbovirus infection, although significant antibody titres to GM1, GalC, LM1, and GalNAc-GD1a were found infrequently. Conclusion: A large proportion of cases had laboratory evidence of a recent infection with ZIKV or CHIKV, and recent infection with both viruses was found in almost one third of patients. Most patients with a recent arbovirus infection had a sensorimotor, demyelinating GBS. We did not find a specific anti-glycolipid antibody signature in association with arbovirus-related GBS
    corecore