44 research outputs found

    Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water

    Get PDF
    Conjugated microporous polymers (CMPs) have been used as photocatalysts for hydrogen production from water in the presence of a sacrificial electron donor. The relative importance of the linker geometry, the co-monomer linker length, and the degree of planarisation were studied with respect to the photocatalytic hydrogen evolution rate

    Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water

    Get PDF
    Conjugated organic polymers have shown potential as photocatalysts for hydrogen production by water splitting. Taking advantage of a high throughput screening workflow, two series of acetylene-linked co-polymers were prepared and studied for their potential as photocatalysts for sacrificial hydrogen production from water. It was found that a triethynylbenzene-based polymer with a dibenzo[b,d]thiophene sulfone linker (TE11) had the highest performance in terms of hydrogen evolution rate under visible illumination in the presence of a sacrificial hole-scavenger. Synthetically elaborating the triethynylbenzene linker in TE11 by changing the core and by introducing nitrogen, the resulting hydrogen evolution rate was further increased by a factor of nearly two

    Structurally Diverse Covalent Triazine-based Framework Materials for Photocatalytic Hydrogen Evolution from Water

    Get PDF
    A structurally diverse family of 39 covalent triazine-based framework materials (CTFs) are synthesized by Suzuki–Miyaura polycondensation and tested as hydrogen evolution photocatalysts using a high-throughput workflow. The two best-performing CTFs are based on benzonitrile and dibenzo[b,d]thiophene sulfone linkers, respectively, with catalytic activities that are among the highest for this material class. The activities of the different CTFs are rationalized in terms of four variables: the predicted electron affinity, the predicted ionization potential, the optical gap, and the dispersibility of the CTFs particles in solution, as measured by optical transmittance. The electron affinity and dispersibility in solution are found to be the best predictors of photocatalytic hydrogen evolution activity

    Structural Elucidation of Amorphous Photocatalytic Polymers from Dynamic Nuclear Polarization Enhanced Solid State NMR

    Get PDF
    Dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) offers a recent approach to dramatically enhance NMR signals and has enabled detailed structural information to be obtained in a series of amorphous photocatalytic copolymers of alternating pyrene and benzene monomer units, the structures of which cannot be reliably established by other spectroscopic or analytical techniques. Large 13C cross-polarization (CP) magic angle spinning (MAS) signal enhancements were obtained at high magnetic fields (9.4–14.1 T) and low temperature (110–120 K), permitting the acquisition of a 13C INADEQUATE spectrum at natural abundance and facilitating complete spectral assignments, including when small amounts of specific monomers are present. The high 13C signal-to-noise ratios obtained are harnessed to record quantitative multiple contact CP NMR data, used to determine the polymers’ composition. This correlates well with the putative pyrene:benzene stoichiometry from the monomer feed ratio, enabling their structures to be understood

    Photocatalytic polymers of intrinsic microporosity for hydrogen production from water

    Get PDF
    The most common strategy for introducing porosity into organic polymer photocatalysts has been the synthesis of cross-linked conjugated networks or frameworks. Here, we study the photocatalytic performance of a series of linear conjugated polymers of intrinsic microporosity (PIMs) as photocatalysts for hydrogen production from water in the presence of a hole scavenger. The best performing materials are porous and wettable, which allows for the penetration of water into the material. One of these polymers of intrinsic microporosity, P38, showed the highest sacrificial hydrogen evolution rate of 5226 ÎŒmol h−1 g−1 under visible irradiation (λ > 420 nm), with an external quantum efficiency of 18.1% at 420 nm, placing it among the highest performing polymer photocatalysts reported to date for this reaction

    Effect of substituting non-polar chains with polar chains on the structural dynamics of small organic molecule and polymer semiconductors

    Get PDF
    The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the popular alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic hydrogen evolution. Beyond the differences in polarity, the carbon–oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example. In this context, we use neutron spectroscopy as a master method of probe, in addition to characterisation techniques such as X-ray diffraction, differential scanning calorimetry and polarized optical microscopy to study the effect of the substitution of n-hexyl (Hex) chains by triethylene glycol (TEG) chains on the structural dynamics of two organic semiconducting materials: a phenylene–bithiophene–phenylene (PTTP) small molecule and a fluorene-co-dibenzothiophene (FS) polymer. Counterintuitively, inelastic neutron scattering (INS) reveals a general softening of the modes of PTTP and FS materials with Hex chains, pointing towards an increased dynamical disorder in the Hex-based systems. However, temperature-dependent X-ray and neutron diffraction as well as INS and differential scanning calorimetry evidence an extra reversible transition close to room temperature for PTTP with TEG chains. The observed extra structural transition, which is not accompanied by a change in birefringence, can also be observed by quasi-elastic neutron scattering (QENS). A fastening of the TEG chains dynamics is observed in the case of PTTP and not FS. We therefore assign this transition to the melt of the TEG chains. Overall the TEG chains are promoting dynamical order at room temperature, but if crystallising, may introduce an extra reversible structural transition above room temperature leading to thermal instabilities. Ultimately, a deeper understanding of chain polarity and structural dynamics can help guide new materials design and navigate the intricate balance between electronic charge transport and aqueous swelling that is being sought for a number of emerging organic electronic and bioelectronic applications

    Water Oxidation with Cobalt‐Loaded Linear Conjugated Polymer Photocatalysts

    Get PDF
    We report here the first examples of linear conjugated organic polymer photocatalysts that produce oxygen from water after loading with cobalt and in the presence of an electron scavenger. The oxygen evolution rates, which are higher than for related organic materials, can be rationalized by a combination of the thermodynamic driving force for water oxidation, the light absorption of the polymer, and the aqueous dispersibility of the relatively hydrophilic polymer particles. We also used transient absorption spectroscopy to study the best performing system and we found that fast oxidative quenching of the exciton occurs (picoseconds) in the presence of an electron scavenger, minimizing recombination

    Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework

    Get PDF
    We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 ÎŒmol g^{−1} h^{−1}. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore