173 research outputs found

    Prevalence of Grey Matter Pathology in Early Multiple Sclerosis Assessed by Magnetization Transfer Ratio Imaging

    Get PDF
    The aim of the study was to assess the prevalence, the distribution and the impact on disability of grey matter (GM) pathology in early multiple sclerosis. Eighty-eight patients with a clinically isolated syndrome with a high risk developing multiple sclerosis were included in the study. Forty-four healthy controls constituted the normative population. An optimized statistical mapping analysis was performed to compare each subject's GM Magnetization Transfer Ratio (MTR) imaging maps with those of the whole group of controls. The statistical threshold of significant GM MTR decrease was determined as the maximum p value (p<0.05 FDR) for which no significant cluster survived when comparing each control to the whole control population. Using this threshold, 51% of patients showed GM abnormalities compared to controls. Locally, 37% of patients presented abnormalities inside the limbic cortex, 34% in the temporal cortex, 32% in the deep grey matter, 30% in the cerebellum, 30% in the frontal cortex, 26% in the occipital cortex and 19% in the parietal cortex. Stepwise regression analysis evidenced significant association (p = 0.002) between EDSS and both GM pathology (p = 0.028) and T2 white matter lesions load (p = 0.019). In the present study, we evidenced that individual analysis of GM MTR map allowed demonstrating that GM pathology is highly heterogeneous across patients at the early stage of MS and partly underlies irreversible disability

    Search for the standard model Higgs boson at LEP

    Get PDF

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Semen quality in Peruvian pesticide applicators: association between urinary organophosphate metabolites and semen parameters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organophosphates are broad class of chemicals widely used as pesticides throughout the world. We performed a cross-sectional study of associations between dialkylphosphate metabolites of organophosphates and semen quality among pesticide applicators in Majes (Arequipa), Peru.</p> <p>Methods</p> <p>Thirty-one men exposed to organophosphate (OP) pesticides and 31 non-exposed were recruited (age, 20–60 years). In exposed subjects, semen and a blood sample were obtained one day after the last pesticide application. Subjects were grouped according to levels of OP metabolites in urine. Semen samples were analyzed for sperm concentration, percentage of sperm motility, percentage of normal morphology, semen leucocytes and concentrations of fructose and zinc. Exposure to OP was assessed by measuring six urinary OP metabolites (dimethyl and diethyl phosphates and thiophosphates) by gas chromatography using a single flame photometric detector.</p> <p>Results</p> <p>Diethyldithiophosphate (p = 0.04) and diethylthiophosphate (p = 0.02) better reflected occupational pesticide exposure than other OP metabolites. Semen analysis revealed a significant reduction of semen volume and an increase in semen pH in men with OP metabolites. Multiple regression analysis showed that both occupational exposure to pesticides and the time of exposure to pesticides were more closely related to alterations in semen quality parameters than the single measurement of OP metabolites in urine.</p> <p>Conclusion</p> <p>The study demonstrated that occupational exposure to OP pesticides was more closely related to alterations in semen quality than a single measurement of urine OP metabolites. Current measurement of OP metabolites in urine may not reflect the full risk.</p

    Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro

    Get PDF
    BACKGROUND: In vitro maturation (IVM) of oocytes followed by fertilization in vitro (IVF) and embryo transfer offers an alternative to conventional IVF treatment that minimises drug administration and avoids ovarian hyperstimulation. However, the technique is less efficient than maturation in vivo. In the present study, a non-human primate model was used to address the hypothesis that the number of oocytes is increased and their nuclear and cytoplasmic maturity after IVM are improved when maturation is initiated in vivo by priming with hCG. METHODS: Young, adult cynomolgus monkeys were given recombinant human (rh) gonadotropins to stimulate the development of multiple follicles, and oocytes were aspirated 0, 12, 24, or 36 h after injection of an ovulatory dose of rhCG. The nuclear status of oocytes was determined at the time of recovery and after culture for a total elapsed time of 40–44 hours after hCG. RESULTS: Priming with hCG significantly increased the number of oocytes harvested, especially after delaying aspiration for 24 h or longer. Nuclear maturation after the full period in culture was also enhanced by priming: 71.5, 83.6, and 94.6% of oocytes collected at 0, 12, and 24 h hCG had progressed to MII by the end of the culture period, compared to 87.8% of oocytes that were retrieved at 36 h. A large proportion of oocytes reaching the MII stage had either or both abnormal spindles (>40%) and misaligned chromosomes (>60%), judging by immunofluorescence microscopy, but these abnormalities were independent of culture time. The mitochondria were evenly distributed throughout the cytoplasm at all stages of maturation. Importantly, there was no microscopic evidence that the duration of culture had any injurious effects on the cells. CONCLUSION: In conclusion, the evidence supports this non-human primate as a model for human IVM and the practice of priming with hCG to promote developmental potential

    Ovarian cancer molecular pathology.

    Full text link
    Peer reviewe

    Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial plant pathogens belonging to the <it>Xanthomonas </it>genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.</p> <p>Results</p> <p>We established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of <it>Xanthomonas </it>spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes.</p> <p>Conclusions</p> <p>These data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.</p

    Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success

    Get PDF
    Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development

    Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms

    Get PDF
    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected
    corecore