132 research outputs found

    Association of IL-4RA single nucleotide polymorphisms, HLA-DR and HLA-DQ in children with Alternaria-sensitive moderate-severe asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma afflicts 6% to 8% of the United States population, and severe asthma represents approximately 10% of asthmatic patients. Several epidemiologic studies in the United States and Europe have linked <it>Alternaria </it>sensitivity to both persistence and severity of asthma. In order to begin to understand genetic risk factors underlying <it>Alternaria </it>sensitivity and asthma, in these studies we examined T cell responses to <it>Alternaria </it>antigens, HLA Class II restriction and HLA-DQ protection in children with severe asthma.</p> <p>Methods</p> <p>Sixty children with <it>Alternaria</it>-sensitive moderate-severe asthma were compared to 49 children with <it>Alternaria</it>-sensitive mild asthma. We examined HLA-DR and HLA-DQ frequencies in <it>Alternaria</it>-sensitive asthmatic by HLA typing. To determine ratios of Th1/Th2 <it>Alternaria</it>-specific T-cells, cultures were stimulated in media alone, <it>Alternaria alternata </it>extract and Alt a1. Sensitivity to IL-4 stimulation was measured by up-regulation of CD23 on B cells.</p> <p>Results</p> <p>Children with <it>Alternaria</it>-sensitive moderate-severe asthma trended to have increased sensitivities to <it>Cladosporium </it>(46% versus 35%), to <it>Aspergillus </it>(43% versus 28%), and significantly increased sensitivities to trees (78% versus 57%) and to weeds (68% versus 48%). The IL-4RA ile75val polymorphism was significantly increased in <it>Alternaria</it>-sensitive moderate-severe asthmatics, 83% (0.627 allele frequency) compared to <it>Alternaria</it>-sensitive mild asthmatics, 57% (0.388 allele frequency). This was associated with increased sensitivity to IL-4 stimulation measured by significantly increased IL-4 stimulated CD23 expression on CD19+ and CD86+CD19+ B cells of <it>Alternaria</it>-sensitive moderate-severe asthmatics. IL-5 and IL-13 synthesis was significantly increased in <it>Alternaria</it>-sensitive moderate-severe asthmatics compared to mild asthmatics to <it>Alternaria </it>extract and Alt a1 stimulation. The frequency of HLA-DQB1*03 allele was significantly decreased in <it>Alternaria</it>-sensitive moderate-severe asthmatics compared to mild asthmatics, 39% versus 63%, with significantly decreased allele frequency, 0.220 versus 0.398.</p> <p>Summary</p> <p>In children with <it>Alternaria</it>-sensitive moderate severe asthma, there was an increased Th2 response to <it>Alternaria </it>stimulation and increased sensitivity to IL-4 stimulation. This skewing towards a Th2 response was associated with an increased frequency of the IL-4RA ile75val polymorphism. In evaluating the HLA association, there was a decreased frequency of HLA-DQB1*03 in <it>Alternaria</it>-sensitive moderate severe asthmatic children consistent with previous studies suggest that HLA-DQB1*03 may be protective against the development of mold-sensitive severe asthma.</p

    Deliberative and epistemic approaches to democracy

    Get PDF
    Deliberative and epistemic approaches to democracy are two important dimensions of contemporary democratic theory. This chapter studies these dimensions in the emerging ecosystem of civic and political participation tools, and appraises their collective value in a new distinct concept: linked democracy. Linked democracy is the distributed, technology-supported collective decision-making process, where data, information and knowledge are connected and shared by citizens online. Innovation and learning are two key elements of Athenian democracies which can be facilitated by the new digital technologies, and a cross-disciplinary research involving computational scientists and democratic theorists can lead to new theoretical insights of democracy

    Is Mate Choice in Humans MHC-Dependent?

    Get PDF
    In several species, including rodents and fish, it has been shown that the Major Histocompatibility Complex (MHC) influences mating preferences and, in some cases, that this may be mediated by preferences based on body odour. In humans, the picture has been less clear. Several studies have reported a tendency for humans to prefer MHC-dissimilar mates, a sexual selection that would favour the production of MHC-heterozygous offspring, who would be more resistant to pathogens, but these results are unsupported by other studies. Here, we report analyses of genome-wide genotype data (from the HapMap II dataset) and HLA types in African and European American couples to test whether humans tend to choose MHC-dissimilar mates. In order to distinguish MHC-specific effects from genome-wide effects, the pattern of similarity in the MHC region is compared to the pattern in the rest of the genome. African spouses show no significant pattern of similarity/dissimilarity across the MHC region (relatedness coefficient, R = 0.015, p = 0.23), whereas across the genome, they are more similar than random pairs of individuals (genome-wide R = 0.00185, p<10−3). We discuss several explanations for these observations, including demographic effects. On the other hand, the sampled European American couples are significantly more MHC-dissimilar than random pairs of individuals (R = −0.043, p = 0.015), and this pattern of dissimilarity is extreme when compared to the rest of the genome, both globally (genome-wide R = −0.00016, p = 0.739) and when broken into windows having the same length and recombination rate as the MHC (only nine genomic regions exhibit a higher level of genetic dissimilarity between spouses than does the MHC). This study thus supports the hypothesis that the MHC influences mate choice in some human populations

    Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM

    Get PDF
    In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments

    Saccadic latency in hepatic encephalopathy: a pilot study

    Get PDF
    Hepatic encephalopathy is a common complication of cirrhosis. The degree of neuro-psychiatric impairment is highly variable and its clinical staging subjective. We investigated whether eye movement response times—saccadic latencies—could serve as an indicator of encephalopathy. We studied the association between saccadic latency, liver function and paper- and pencil tests in 70 patients with cirrhosis and 31 patients after liver transplantation. The tests included the porto-systemic encephalopathy (PSE-) test, critical flicker frequency, MELD score and ammonia concentration. A normal range for saccades was established in 31 control subjects. Clinical and biochemical parameters of liver, blood, and kidney function were also determined. Median saccadic latencies were significantly longer in patients with liver cirrhosis when compared to patients after liver transplantation (244 ms vs. 278 ms p < 0.001). Both patient groups had prolonged saccadic latency when compared to an age matched control group (175 ms). The reciprocal of median saccadic latency (μ) correlated with PSE tests, MELD score and critical flicker frequency. A significant correlation between the saccadic latency parameter early slope (σE) that represents the prevalence of early saccades and partial pressure of ammonia was also noted. Psychometric test performance, but not saccadic latency, correlated with blood urea and sodium concentrations. Saccadic latency represents an objective and quantitative parameter of hepatic encephalopathy. Unlike psychometric test performance, these ocular responses were unaffected by renal function and can be obtained clinically within a matter of minutes by non-trained personnel

    Androgen Receptor Function Links Human Sexual Dimorphism to DNA Methylation

    Get PDF
    Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS) due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aber

    Simultaneous Recruitment of Drug Users and Men Who Have Sex with Men in the United States and Russia Using Respondent-Driven Sampling: Sampling Methods and Implications

    Get PDF
    The Sexual Acquisition and Transmission of HIV Cooperative Agreement Program (SATHCAP) examined the role of drug use in the sexual transmission of the human immunodeficiency virus (HIV) from traditional high-risk groups, such as men who have sex with men (MSM) and drug users (DU), to lower risk groups in three US cities and in St. Petersburg, Russia. SATHCAP employed respondent-driven sampling (RDS) and a dual high-risk group sampling approach that relied on peer recruitment for a combined, overlapping sample of MSM and DU. The goal of the sampling approach was to recruit an RDS sample of MSM, DU, and individuals who were both MSM and DU (MSM/DU), as well as a sample of sex partners of MSM, DU, and MSM/DU and sex partners of sex partners. The approach efficiently yielded a sample of 8,355 participants, including sex partners, across all four sites. At the US sites—Los Angeles, Chicago, and Raleigh–Durham—the sample consisted of older (mean age = 41 years), primarily black MSM and DU (both injecting and non-injecting); in St. Petersburg, the sample consisted of primarily younger (mean age = 28 years) MSM and DU (injecting). The US sites recruited a large proportion of men who have sex with men and with women, an important group with high potential for establishing a generalized HIV epidemic involving women. The advantage of using the dual high-risk group approach and RDS was, for the most part, the large, efficiently recruited samples of MSM, DU, and MSM/DU. The disadvantages were a recruitment bias by race/ethnicity and income status (at the US sites) and under-enrollment of MSM samples because of short recruitment chains (at the Russian site)

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore