25 research outputs found

    Association of Ficolin-3 with Severity and Outcome of Chronic Heart Failure

    Get PDF
    BACKGROUND: Inflammatory mechanisms involving complement activation has been shown to take part in the pathophysiology of congestive heart failure, but the initiating mechanisms are unknown. We hypothesized that the main initiator molecules of the lectin complement pathway mannose-binding lectin (MBL), ficolin-2 and ficolin-3 were related to disease severity and outcome in chronic heart failure. METHODS AND RESULTS: MBL, ficolin-2 and ficolin-3 plasma concentrations were determined in two consecutive cohorts comprising 190 patients from Hungary and 183 patients from Norway as well as controls. Disease severity and clinical parameters were determined at baseline, and all-cause mortality was registered after 5-years follow-up. In univariate analysis a low level of ficolin-3, but not that of MBL or ficolin-2, was significantly associated with advanced heart failure (New York Heart Association Class IV, p<0.001 for both cohorts) and showed inverse correlation with B- type natriuretic peptide (BNP) levels (r = -0.609, p<0.001 and r = -0.467, p<0.001, respectively). In multivariable Cox regression analysis, adjusted for age, gender and BNP, decreased plasma ficolin-3 was a significant predictor of mortality (HR 1.368, 95% CI 1.052-6.210; and HR 1.426, 95% CI 1.013-2.008, respectively). Low ficolin-3 levels were associated with increased complement activation product C3a and correspondingly decreased concentrations of complement factor C3. CONCLUSIONS: This study provides evidence for an association of low ficolin-3 levels with advanced heart failure. Concordant results from two cohorts show that low levels of ficolin-3 are associated with advanced heart failure and outcome. The decrease of ficolin-3 was associated with increased complement activation

    Combined dynamics of mercury and terrigenous organic matter following impoundment of Churchill Falls Hydroelectric Reservoir, Labrador

    Get PDF
    Sediments from two recently (40 years) flooded lakes (Gabbro lake and Sandgirt lake) and an unflooded lake (Atikonak lake) were sampled to investigate the effects of reservoir impoundment on mercury (Hg) and terrigenous organic matter (TOM) loading in the Churchill Falls Hydroelectric complex in Labrador, Canada. Lignin biomarkers in TOM, which exclusively derive from terrestrial vegetation, were used as biomarkers for the presence and source origin of TOM—and for Hg due to their close associations—in sediments. In the two flooded Gabbro and Sandgirt lakes, we observed drastic increases in total mercury concentrations, T-[Hg], in sediments, which temporally coincided with the time of reservoir impoundment as assessed by 210Pb age dating. In the natural Atikonak lake sediments, on the other hand, T-[Hg] showed no such step-increase but gradually and slowly increased until present. T-[Hg] increases in lake sediments after flooding were also associated with a change in the nature of TOM: biomarker signatures changed to typical signatures of TOM from vegetated terrestrial landscape surrounding the lakes, and indicate a change to TOM that was much less degraded and typical of forest soil organic horizons. We conclude that T-[Hg] increase in the sediments of the two flooded reservoirs was the result of flooding of surrounding forests, whereby mainly surface organic horizons and upper soil horizons were prone to erosion and subsequent re-sedimentation in the reservoirs. The fact that T-[Hg] was still enriched 40 years after reservoir impoundment indicates prolonged response time of lake Hg and sediment loadings after reservoir impoundments

    Expression analysis of asthma candidate genes during human and murine lung development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function.</p> <p>Objective</p> <p>To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma.</p> <p>Methods</p> <p>Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6.</p> <p>Results</p> <p>In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. <it>NOD1, EDN1, CCL5, RORA </it>and <it>HLA-G</it>. Among the asthma genes identified in genome wide association studies, <it>ROBO1</it>, <it>RORA, HLA-DQB1, IL2RB </it>and <it>PDE10A </it>were differentially expressed during human lung development.</p> <p>Conclusions</p> <p>Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.</p

    Association of HLA-DRB1 amino acid residues with giant cell arteritis: genetic association study, meta-analysis and geo-epidemiological investigation

    Get PDF
    Introduction: Giant cell arteritis (GCA) is an autoimmune disease commonest in Northern Europe and Scandinavia. Previous studies report various associations with HLA-DRB1*04 and HLA-DRB1*01; HLA-DRB1 alleles show a gradient in population prevalence within Europe. Our aims were (1) to determine which amino acid residues within HLA-DRB1 best explained HLA-DRB1 allele susceptibility and protective effects in GCA, seen in UK data combined in meta-analysis with previously published data, and (2) to determine whether the incidence of GCA in different countries is associated with the population prevalence of the HLA-DRB1 alleles that we identified in our meta-analysis. Methods: GCA patients from the UK GCA Consortium were genotyped by using single-strand oligonucleotide polymerization, allele-specific polymerase chain reaction, and direct sequencing. Meta-analysis was used to compare and combine our results with published data, and public databases were used to identify amino acid residues that may explain observed susceptibility/protective effects. Finally, we determined the relationship of HLA-DRB1*04 population carrier frequency and latitude to GCA incidence reported in different countries. Results: In our UK data (225 cases and 1378 controls), HLA-DRB1*04 carriage was associated with GCA susceptibility (odds ratio (OR) = 2.69, P = 1.5×10 −11 ), but HLA-DRB1*01 was protective (adjusted OR = 0.55, P = 0.0046). In meta-analysis combined with 14 published studies (an additional 691 cases and 4038 controls), protective effects were seen from HLA-DR2, which comprises HLA-DRB1*15 and HLA-DRB1*16 (OR = 0.65, P = 8.2×10 −6 ) and possibly from HLA-DRB1*01 (OR = 0.73, P = 0.037). GCA incidence (n = 17 countries) was associated with population HLA-DRB1*04 allele frequency (P = 0.008; adjusted R 2 = 0.51 on univariable analysis, adjusted R 2 = 0.62 after also including latitude); latitude also made an independent contribution. Conclusions: We confirm that HLA-DRB1*04 is a GCA susceptibility allele. The susceptibility data are best explained by amino acid risk residues V, H, and H at positions 11, 13, and 33, contrary to previous suggestions of amino acids in the second hypervariable region. Worldwide, GCA incidence was independently associated both with population frequency of HLA-DRB1*04 and with latitude itself. We conclude that variation in population HLA-DRB1*04 frequency may partly explain variations in GCA incidence and that HLA-DRB1*04 may warrant investigation as a potential prognostic or predictive biomarker

    Mesenchymal Stem Cells Inhibit Complement Activation by Secreting Factor H

    No full text
    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppres-sive capabilities

    Cohort Profile : Pregnancy And Childhood Epigenetics (PACE) Consortium

    Get PDF
    Peer reviewe
    corecore