3,403 research outputs found

    Harmonic Maa{\ss}-Jacobi forms of degree 1 with higher rank indices

    Full text link
    We define and investigate real analytic weak Jacobi forms of degree 1 and arbitrary rank. En route we calculate the Casimir operator associated to the maximal central extension of the real Jacobi group, which for rank exceeding 1 is of order 4. In ranks exceeding 1, the notions of H-harmonicity and semi-holomorphicity are the same.Comment: 28 page

    The Proteus Navier-Stokes code

    Get PDF
    An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes

    NONLINEAR MODELS FOR MULTI-FACTOR PLANT NUTRITION EXPERIMENTS

    Get PDF
    Plant scientists are interested in measuring plant response to quantitative treatment factors, e.g. amount of nutrient applied. Response surface methods are often used for experiments with multiple quantitative factors. However, in many plant nutrition studies, second-order response surface models result in unacceptable lack of fit. This paper explores multi-factor nonlinear models as an alternative. We have developed multi-factor extensions of Mitscherlich and Gompertz models, and fit them to data from experiments conducted at the University of Nebraska-Lincoln Horticulture department. These data are typical of experiments for which conventional response surface models perform poorly. We propose design selection strategies to facilitate economical multi-factor experiments when second-order response surface models are unlikely to fit

    Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress

    Full text link
    We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small angle x-ray scattering. The results show an abrupt transition at an Ar background pressure Pc; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below Pc smooth films are produced, while above Pc roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi2 films are correlated with in situ measurement of stress in WSi2/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at Pc. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio

    Experimental study of excited states of 62{}^{62}Ni via one-neutron (d,p)(d,p) transfer up to the neutron-separation threshold and characteristics of the pygmy dipole resonance states

    Full text link
    The degree of collectivity of the Pygmy Dipole Resonance (PDR) is an open question. Recently, Ries {\it et al.} have suggested the onset of the PDR beyond N=28N=28 based on the observation of a significant E1E1 strength increase in the Cr isotopes and proposed that the PDR has its origin in a few-nucleon effect. Earlier, Inakura {\it et al.} had predicted by performing systematic calculations using the random-phase approximation (RPA) with the Skyrme functional SkM* that the E1E1 strength of the PDR strongly depends on the position of the Fermi level and that it displays a clear correlation with the occupation of orbits with orbital angular momenta less than 33\hbar (l2)(l \leq 2). To further investigate the microscopic structures causing the possible formation of a PDR beyond the N=28N=28 neutron shell closure, we performed a 61^{61}Ni(d,p)62(d,p){}^{62}Ni experiment at the John D. Fox Superconducting Linear Accelerator Laboratory of Florida State University. To determine the angular momentum transfer populating possible Jπ=1J^{\pi} = 1^- states and other excited states of 62{}^{62}Ni, angular distributions and associated single-neutron transfer cross sections were measured with the Super-Enge Split-Pole Spectrograph. A number of Jπ=1J^{\pi} = 1^- states were observed below the neutron-separation threshold after being populated through l=2l=2 angular momentum transfers. A comparison to available (γ,γ)(\gamma,\gamma') data for 58,60{}^{58,60}Ni provides evidence that the B(E1)B(E1) strength shifts further down in energy. The (d,p)(d,p) data clearly prove that l=0l=0 strength, i.e., the neutron (2p3/2)1(3s1/2)+1(2p_{3/2})^{-1}(3s_{1/2})^{+1} one-particle-one-hole configuration plays only a minor role for 11^- states below the neutron-separation threshold in 62{}^{62}Ni.Comment: 15 pages, 8 figures, accepted for publication in Physical Review

    Local and Remote Mean and Extreme Temperature Response to Regional Aerosol Emissions Reductions

    Get PDF
    The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistryclimate models: NOAA GFDL CM3, NCAR CESM1, and NASA GISS-E2. Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with 14 individual aerosol emissions perturbation simulations (160240 years each). We perturb emissions of sulfur dioxide (SO2) and/or carbonaceous aerosol within six world regions and assess the statistical significance of mean and extreme temperature responses relative to internal variability determined by the control simulation and across the models. In all models, the global mean surface temperature response (perturbation minus control) to SO2 and/or carbonaceous aerosol is mostly positive (warming) and statistically significant and ranges from +0.17 K (Europe SO2) to -0.06 K (US BC). The warming response to SO2 reductions is strongest in the US and Europe perturbation simulations, both globally and regionally, with Arctic warming up to 1 K due to a removal of European anthropogenic SO2 emissions alone; however, even emissions from regions remote to the Arctic, such as SO2 from India, significantly warm the Arctic by up to 0.5 K. Arctic warming is the most robust response across each model and several aerosol emissions perturbations. The temperature response in the Northern Hemisphere midlatitudes is most sensitive to emissions perturbations within that region. In the tropics, however, the temperature response to emissions perturbations is roughly the same in magnitude as emissions perturbations either within or outside of the tropics. We find that climate sensitivity to regional aerosol perturbations ranges from 0.5 to 1.0 K (W m(exp -2))(exp -1) depending on the region and aerosol composition and is larger than the climate sensitivity to a doubling of CO2 in two of three models. We update previous estimates of regional temperature potential (RTP), a metric for estimating the regional temperature responses to a regional emissions perturbation that can facilitate assessment of climate impacts with integrated assessment models without requiring computationally demanding coupled climate model simulations. These calculations indicate a robust regional response to aerosol forcing within the Northern Hemisphere midlatitudes, regardless of where the aerosol forcing is located longitudinally. We show that regional aerosol perturbations can significantly increase extreme temperatures on the regional scale. Except in the Arctic in the summer, extreme temperature responses largely mirror mean temperature responses to regional aerosol perturbations through a shift of the temperature distributions and are mostly dominated by local rather than remote aerosol forcing

    Supernova Legacy Survey: Using Spectral Signatures To Improve Type Ia Supernovae As Distance Indicators

    Get PDF
    GMOS optical long-slit spectroscopy at the Gemini-North telescope was used to classify targets from the Supernova Legacy Survey (SNLS) from July 2005 and May 2006 - May 2008. During this time, 95 objects were observed. Where possible the objects' redshifts (z) were measured from narrow emission or absorption features in the host galaxy spectrum, otherwise they were measured from the broader supernova features. We present spectra of 68 confirmed or probable SNe Ia from SNLS with redshifts in the range 0.17 \leq z \leq 1.02. In combination with earlier SNLS Gemini and VLT spectra, we used these new observations to measure pseudo-equivalent widths (EWs) of three spectral features - CaII H&K, SiII and MgII - in 144 objects and compared them to the EWs of low-redshift SNe Ia from a sample drawn from the literature. No signs of changes with z are seen for the CaII H&K and MgII features. Systematically lower EW SiII is seen at high redshift, but this can be explained by a change in demographics of the SNe Ia population within a two-component model combined with an observed correlation between EW SiII and photometric lightcurve stretch.Comment: 49 pages including 2 online-only appendices, accepted for publication in MNRA
    corecore