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SUMMARY

An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes,
called Proteus, for acrospace propulsion applications. The emphasis in the development of Proteus is not algorithm
development or research on numerical methods, but rather the development of the code itself. The objective is to
develop codes that are user-oriented, casily-modified, and well-documented. Well-proven, state-of-the-art solution
algorithms are being used. Code readability, documentation (both internal and exiernal), and validation arc being
emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure
are described briefly, and the various features in the code are summarized. The results from some of the validation
cases that have been run are presented for both the two- and three-dimensional codes.

1. INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program for what-
ever geometries and flow regimes are of current interest to the researcher. Unforwnately, nearly all of the available
nonproprictary programs were started as research projects with the emphasis on demonstrating the numerical algo-
rithm rather than ease of use or ease of modification. The developers usually intend to clean up and formally docu-
ment the program, but the immediate need (o extend it to new geometries and flow regimes Lakes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An exien-
sively modified program may not even perform as expected under certain combinations of operating options. Each
new user must invest considerable time and effort in attempting 10 understand the underlying structure of the pro-
gram if intending 10 do anything more than run standard test cases with it The user’s subsequent modifications

further obscure the program structure and therefore make it even more difficult for others 10 undersiand.

The Proteus two- and three-dimensional Navier-Stokes computer codes are intended to be user-oriented and
easily-modifiable flow analysis programs, primarily for aerospace propulsion applications. Readability, modularity,
and documentation have been the primary objectives. Every subroutine contains an extensive comment section
describing the purpose, input variables, output variables, and calling sequence of the subroutine. With just three
clearly-defined exceptions, the entire program is writien in ANSI standard Fortran 77 to enhance portability. A
master version of the program is maintained and periodically updated with corrections, as well as exiensions of gen-
eral interest, such as turbulence models.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents the equa-
tions and solution procedure used in Proteus. It describes in detail the governing equations, the turbulence models,
the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solu-
tion procedure, and the artificial viscosity models. Volume 2 is the User’s Guide, and coniains information needed
to run the program. It describes the program’s general features, the input and output, the procedure for seuing up
initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job con-
trol language used to run the program, and several iest cases. Volume 3 is the Programmer’s Reference, and con-
tains detailed information useful when modifying the program. It describes the program structure, the Fortran vari-
ables stored in common blocks, and the details of each subprogram.
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In this paper, the analysis and solution procedure are described briefly, and the various features in the code are
summarized. The results from some of the validation cases that have been run are presented for both the two- and
three-dimensional codes. The paper concludes with a brief status report on the Proteus development effort, includ-
ing the work currenuly underway and our future plans.

2. ANALYSIS DESCRIPTION

In this section, the governing equations, the numerical solution method, and the turbulence models are described
briefly. For a much more detailed description, see Volume 1 of the documentation (Towne, Schwab, Benson, and

Suresh, 1990).

2.1 GOVERNING EQUATIONS
The basic governing equations are the compressible Navier-Stokes equations. In Cartesian coordinates, the

two-dimensional planar equations can be writlen in strong conservation law form using vector notation as !

3Q  oE IF _ O0E, OFy

3 Tty =y M

where

Q=[p pu pv Er]r (2a)

pu

_| pu+p
E= puv (2b)
L(Er‘*P)u

pv
F=| 020, (20)
(Er+p)v

Ey=—— (2d)

Fy= bt (2e)

The shear stresses and heat fluxes are given by

1. For brevity, in most instances this paper describes the two-dimensional Proteus code. The extension 1o three dimensions is relatively
straightforward. Differences between the two-dimensional and three-dimensional codes are noted where relevant.
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In these equations, ¢ represents time; x and y represent the Cartesian coordinate directions; u and v are the veloci-
ties in the x and y directions; p, p, and T are the static density, pressure, and temperature; E7 is the total energy per
unit volume; and u, 4, and k are the coefficient of viscosity, the second coefficient of viscosity, and the coefficient
of thermal conductivity.

In addition to the equations presented above, an equation of state is required to relate pressure to the dependent
variables. The equation currently built into the Proteus code is the equation of state for thermally perfect gases,
p = pRT, where R is the gas constant. For calorically perfect gases, this can be rewritien as

p=(r- 1)[51—%p(u2+v2)] @

where 7 is the ratio of specific heats, ¢, /c,. Additional equations are also used to define u, 4, &, and ¢, in terms of
temperature for the fluid under consideration.

All of the equations have been nondimensionalized using appropriate normalizing conditions. Lengths have
been nondimensionalized by L,, velocities by u,, density by p,, temperature by T;, viscosity by u,, thermal conduc-
tivity by k,, pressure and total energy by p,u?, ime by L, [u,, and gas constant and specific heat by u? /T,. The

reference Reynolds and Prandtl numbers are thus defined as Re, = p,u,L, [u, and Pr, = uul [k.T,.

Because the governing equations are wrilien in Canesian coordinates, they are not well suited for general
geometric configurations. For most applications a body-fitted coordinate system is desired. This greatly simplifies
the application of boundary conditions and the bookkeeping in the numerical method used to solve the equations.
The equations are thus transformed from physical (x,y,f) coordinates t0 rectangular orthogonal computational
(£.n.7) coordinates. Equation (1) becomes

3Q 9k  oF _OE, Fv v
T TIMF Pl TR ™ ©)

where

5.2
Q'J

E= J(BL,+F¢,+Q2)
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F= (En,+Fn,+Qn)

E, = }(Evz. +Fyé,)

v= —-(EV"I + FV"y)

In these equations the derivatives £,, n,, eic., are the metric scale coefficients for the generalized nonorthogonal
grid wansformation. J is the Jacobian of the transformation.

2.2 NUMERICAL METHOD

2.2.1 Time Differencing. The goveming equations are solved by marching in time from some known set of initial
conditions using a finite difference technique. The time differencing scheme currently used is the generalized
method of Beam and Warming (1978). With this scheme, the time derivative term in equation (5) is written as

. “n An ~n-]
3Q_sQ" & aaQh, 1 3Q°, & aQ +o[[e,-%—ez]m.<m’] ©

ar At 1+02 o7 1+6, ot 1+6, Az

where AQ" = 6"1 —6". The superscripts n and n + 1 denote the known and unknown time levels, respectively. By
choosing appropriate values for 8, and 6,, the solution procedure can be either first- or second-order accurate in
time,

Solving equation (5) for 36 /01, substituting the result into equation (6) for B(A(:)") /d7 and 86" /97, and multi-
plying by A7 yields

6.=_91A1[8(AE) a(Aﬁ")]_ At [aé" ai‘"]- 0,At [a(Af-:C) a(Ai';)}+ At [af-:'; al?;}

1+6,| 0o¢ an 146, | 9 " on | 1+6,| o0& | an 1+6, | 9  on
62 a1 _1 2 3
+ 1780 »ro[[esa1 . a,](m) (A7) } 0

2.2 Linearization Procedure. Equation (7) is nonlinear, since, for example, AE" =E" Y g and the unknown
E™" is a nonlinear function of the dependent variables and of the metric coefficients resulting from the generalized
grid transformation. The equations must therefore be linearized to be solved by the finite difference procedure. For
the inviscid terms, and for the non—cross-derivative viscous terms, this is done by expanding each nonlinear expres-
sion in a Taylor series in time about the known time level n. The cross-derivative viscous terms are simply lagged
(i.c., evaluated at the known time level n and treated as source lerms.)

The linearized form of equation (7) may be writien as
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~p 91A1 0 _é:_ § ~n _a— ii}_ " ~n 9|A1' d ié—lb_“ “j‘ _ﬂ_ aﬁh ’ anf| _
AQ+1+92 -B?Ua(}] AQ}+an[[aQ] AQ]}-Ha, || aQ 8Q +an 3Q 8Q | =

At {aﬁ aé]‘ At [3ﬁv. JFy, } (1+65)A [aﬁv,ﬁf’v.‘" 8,41 {3ﬁv,+3f"v,]"‘
+

T 146, SE -8_17 1+6, | 9 * an 1+6, o on ] T 146, | Of an
+ 62 Aé""+o 0,-1 -0 (A7)%, (03~ 6,)(AT)} a7’ @)
1+02 1 2 2 [ 3 1 '

where 3E/ 8(} and Qf? / aQ are the Jacobian coefficient matrices resulting from the lineasization of the convective
terms, and oEy, /0Q and oFy, /0Q are the Jacobian coefficient matrices resulting from the lincarization of the
viscous terms.

The boundary conditions are treated implicitly, and may be viewed simply as additional equations to be solved
by the ADI solution algorithm. In general, they also involve nonlinear functions of the dependent variables. They
are therefore linearized using the same procedure as for the goveming equations.

2.2.3 Solution Procedure. The govemning equations, presented in linearized matrix form as equation (8), are
solved by an altemating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Bni-
ley and McDonald (1977), and by Beam and Warming (1978). Using approximate factorization, equation (8) can be
split into the following two-sweep sequence.

Sweep 1 (& direction)
~e 6,41 9 3E |" ~| 6187 3 3y, e _ At E JF | _ar 3y, aFy, |*
4Q + 775, ag[[aQ]A ] Tv6, 3¢ || 2 | 2Q |7 T Tee € o) T 1es| R D
1+8,)at [ Ey, Fy, 1" 64 3E, oF, " “ne
(+3)1’ V+ v —3‘!' V,+ v, +92 AQl (92)
l+92 ag aﬂ 1+02 aé an l+62
Sweep 2 (n direction)
~n 6,807 3 |[oF |" ~e| 6187 3 ai-'v, " sl
AQ+ 7%, an Hao] AQ]' e | 30 | 297 (9b)

These equations represent the two-sweep alternating direction implicit (ADI) algorithm used to advance the solution
from time level nto n+ 1. Q is the intermediate solution,

Spatial derivatives in equations (9a) and (9b) are approximated using second-order central difference formulas.
The resulting set of algebraic equations can be writien in matrix form with a block tri-diagonal coefficient matrix.
They are solved using the block matrix version of the Thomas algorithm (e.g., see Anderson, Tannehill, and
Pletcher, 1984).

2.2.4 Artificial Viscosity. With the numerical algorithm described above, high frequency nonlinear instabilities
can appear as the solution develops. For example, in high Reynolds number flows oscillations can result from the
odd-even decoupling inherent in the use of second-order central differencing for the inviscid terms. In addition,
physical phenomena such as shock waves can cause instabilities when they are captured by the finite difference
algorithm. Artificial viscosity, or smoothing, is normally added 1o the solution algorithm 1o suppress these high
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frequency instabilities. Two artificial viscosity models are currently available in the- Proteus computer code — a
constant coefficient model used by Steger (1978), and the nonlinear coefficient model of Jameson, Schmidt, and
Turkel (1981). The implementation of these models in generalized nonorthogonal coordinates is described by Pul-
liam (1986).

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The standard
explicit smoothing uses fourth-order differences, and damps the high frequency nonlinear insabilities. Second-
order explicit smoothing, while not used by Steger or Pulliam, is also available in Proreus. It provides more
smoothing than the fourth-order smoothing, but introduces a larger error, and is therefore not used as often. The
implicit smoothing is second order and is intended to extend the linear stability bound of the fourth-order explicit
smoothing.

The explicit antificial viscosity is implemented in the numerical algorithm by adding the following terms 1o the
right hand side of equation (9a) (i.c., the source term for the first ADI sweep.)

A DA
ng ! (VA Q+Y,4,Q)- igj—’ [(chc)ZQ + (V,,A,,)’Q}

ef? and ef® are the second- and fourth-order explicit antificial viscosity coefficients. The symbols V and A are
backward and forward first difference operators.

The implicit anificial viscosity is implemented by adding the following terms to the left hand side of the equa-
tions specified.

A aw
- "J i [vcae vaQ )] to equation (9a)
- 5’15- [v,,A,, (JA()“)] to equation (9b)

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by Pulliam
(1986), but in the current notation, the following terms are added to the right hand side of equation (9a).

v [% +[%] [c?)AgQ—es‘)AgnggQ]i +9, [JJL] +[ﬂ [es,”A,,Q—es,"A,,v,,A,,Q]
i+l [} \ J+l J

The subscripts i and j denote grid indices in the £ and n directions. In the above expression, y is defined as

J

V=y,t¥y,

where v, and v, are spectral radii defined by

_ Ui +a gl g

V. AZ
IV +aVnZ+n?
Vy= -
An

Here U and V are the contravariant velocities without metric normalization, defined by

U=§+&u+§yv
V= N+ Nu+,V

anda = \/7RT, the speed of sound.
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The parameters £ and £ are the second- and fourth-order antificial viscosity coefficients. For the coefficients
of the £ direction differences,

[522)] - = K'zATmax(aiH » Ois ai'l)
i

), o a2

where

Pis1 =2pi +Pia |
Pisn +2Pi+Pin |

o;

and x, and x, are constants. Similar formulas are used for the coefficients of the n direction differences. The
parameter o is a pressure gradient scaling parameler that increases the amount of second-order smoothing relative
10 fourth-order smoothing near shock waves. The logic used to compute £® switches off the fourth-order smooth-
ing when the second-order smoothing term is large.

23 TURBULENCE MODELS

Turbulence is modeled using either a generalized version of the Baldwin and Lomax (1978) algebraic eddy
viscosity model, or the Chien (1982) low Reynolds number k-& model.

2.3.1 Baldwin-Lomax Model. For wall-bounded flows, the Baldwin-Lomax turbulence model is a two-layer
model, with

(10)

{(ﬂl)imr for yusyb
My

- (P()ouur for Ya>Ys

where y, is the normal distance from the wall, and y, is the smallest value of y, at which the vﬂues of u, from the
inner and outer region formulas are equal. For free wrbulent Aows, only the outer region value is used.

The outer region turbulent viscosity at a given § or station is computed from
(ﬂl)ouur = chppFchmecher (1 l)

where K is the Clauser constant, taken as 0.0168, and C,, is a constant taken as 1.6.
The parameter £, is computed from

YmarF max for wall-bounded flows

Fwah = (12)

C .&Vﬁg%"—x for free wrbulent flows

where C,., is a constant taken as 0.25, and
Vig = 1Vl = 1V i

where Vs the total velocity vector.

The parameter F .z, in equation (12) is the maximum value of
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y. 18| [1 eV A ] for wall-bounded flows

FGu) = (13)
o Ya IBI for free turbulent flows

and Yma is the value of y, comresponding 10 F -

For wall-bounded flows, y, is the normal distance from the wall. For free turbulent flows, two values of F g,
and Yno. are computed — one using the location of |V | as the origin for y,, and one using the location of
|V| min- The origin giving the smaller value of Yz is the one finally used for computing y,, F oz, N0 Yoar-

In equation (13), IHI is the magnitude of the total vorticity, defined for two-dimensional planar flow as
181 = {—-——I (14)

The parameter A * is the Van Driest damping constant, taken as 26.0. The coordinate y * is defined as

Wuf ] ‘Tw e"
*=pnye,= :"R Ya (15)

Y

where u, = V1., /p.Re, is the friction velocily, 7 is the shear stress, and the subscript w indicates a wall value. In
Proteus, 7., is set equal to u,, |£21,,.

The function Fy, in equation (11) is the Klebanoff intermittency factor. For free turbulent flows, Fy, = 1.

For wall-bounded flows,
CrusYn 67-1
Fres = [1 +3[—‘-‘ﬂ] ] (16)
Ymox

In equation (16), B and Cy,,, are constants laken as 5.5 and 0.3, reépectively.

The inner region turbulent viscosity in the Baldwin-Lomax model is
(Eimner = U2 1R e, (17)
where [ is the mixing length, given by
= xy,.[l—e”'/"] (18)

and « is the Von Karman constant, taken as 0.4.

If both boundaries in a given coordinate direction are solid surfaces, the turbulence model is applied separately
for each surface. An averaging procedure is used to combine the resulting two u, profiles into one.

The wrbulent second coefficient of viscosity is simply defined as

2
A= -gﬂl

The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

where ¢, is the specific heat at constant pressure, and Pr, is the turbulent Prandtl number.
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2.3.2 Chien k-¢ Model. The low Reynolds number k-¢ formulation of Chien (1982) was chosen because of its rea-

sonable approximation of the near wall region and because of ils numerical stability. Here k and ¢ are the turbulent
kinetic energy and the wrbulent dissipation rate, respectively.

In Canesian coordinates, the two-dimensional planar

equations for the Chien k-¢ model can be writien using
vector notation as

_3_V1+§E+§Q=S+T

% Tax T Yy . (19

where



2 2 2 2
lfa) ()] 2w, » ) (2, 2
P“z[[ax] +[8y]] 3[ax+8y] *[ay"ax]

ou . ov
Py=—+—
27 o * dy
The wrbulent viscosity is given by
k!
m=C T (20)

C,=C, [1 —e'c’"]

In the above equations, C,, C,, C3. 0,4, 0, and C,, are constanis equal o 1.35, 1.8,0.0115, 1.0, 1.3, and 0.09,
respectively. The parameler y, is the minimum distance to the nearest solid surface, and y* is computed from y,.
In the above equations the mean flow properties have been nondimensionalized as described in Section 2.1. The
turbulent kinetic energy & and the turbulent dissipation rate £ have been nondimensionalized by u4? and pous 8.
respectively.

After transforming from physical to rectangular orthogonal computational coordinates, equation (19) becomes

W oF 3G 2 -
3t toE Tan ST @n

where

~

i:‘-:i‘c—l“p’ﬁu

'i; _1 §upuk +§,pvk
€7 T|Spuc+§,pve

l:-D=

11 |ma(E2+ 6Dk,
J Re,

B(E2+EDe,

_l___l_ “k(gxnx + cyﬂy)kq
J RC, ﬂ:(f:fl:*’g,ﬂ,)f.,

6=éc—ép—GM

éc=

1| mpuk +m,pvk
J |nwpue+nypve

11 |m(ni+n)k,
J Re, {u(nt+nde,
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_1__‘_ “k(éxnx"’cyr’y)k{
J Re, #:(gznx+§yny)£¢

The time differencing scheme and linearization procedure described previously for the mean flow equations are
also applied to equation (21). The mean flow variables are evaluated at the known time level a. This allows the k-£
equations to be uncoupled from the mean flow equations and solved separately. Spatial derivatives are approxi-
mated using first-order upwind differences for the convective terms, and second-order central differences for the
viscous terms. In the two-dimensional Proteus code, the equations are solved by the same ADI procedure as the
mean flow equations. In the three-dimensional code, they are solved by a two-sweep LU procedure, as described by
Hoffmann (1989).

The wrbulent second coefficient of viscosity 4, and the turbulent thermal conductivity cocfficient k, are defined
as described in the previous section.

3. CODE FEATURES

In this section the basic characteristics and capabilities of the two- and three-dimensional Proteus codes arc
summarized. For a much more detailed description, see Volumes 2 and 3 of the documentation (Towne, Schwab,
Benson, and Suresh, 1990).

3.1 ANALYSIS

The Proteus codes solve the unsteady compressible Navier-Stokes equations in either two or three dimensions.
The 2-D code can solve either the planar or axisymmetric form of the equations. Swirl is allowed in axisymmetric
flow. The 2-D planar equations and the 3-D equations are solved in fully conservative form. As subsets of these
equations, options are available to solve the Euler equations or the thin-layer Navier-Stokes equations. An option is
also available to eliminate the energy equation by assuming constant total enthalpy.

The equations are solved by marching in lime using the generalized time differencing of Beam and Warming
(1978). The method may be cither first- or second-order accurate in time, depending on the choice of ume dif-
ferencing parameters. Second-order central differencing is used for all spatial derivatives. Nonlinear terms are
linearized using second-order Taylor series expansions in time. The resulting difference equations are solved using
an alternating-direction implicit (ADI) technique, with Douglas-Gunn type splitting as written by Briley and
McDonald (1977). The boundary conditions are also treated implicitly.

Antificial viscosity, or smoothing, is normally added to the solution algorithm to damp pre- and post-shock oscil-
lations in supersonic flow, and 1o prevent odd-even decoupling due to the use of central differences in convection-
dominated regions of the flow. Implicit smoothing and two types of explicit smoothing are available in Proteus.
The implicit smoothing is second order with constant coefficients. For the explicit smoothing the user may choose a
constant coefficient second- and/or fourth-order model (Steger, 1978), or a nonlinear coefficient mixed second- and
fourth-order model (Jameson, Schmidt, and Turkel, 1981). The nonlinear coefficient model was designed
specifically for flow with shock waves.

The equations are fully coupled, leading to a sysiem of equations with a block tridiagonal coefficient matrix that
can be solved using the block matrix version of the Thomas algorithm. Because this algorithm is recursive, the
source code cannot be vectorized in the ADI sweep direction. However, it is vectorized in the non-sweep direction,
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leading to an efficient implementation of the algorithm.
32 GEOMETRY AND GRID SYSTEM

The equations solved in Proteus were originally written in a Cartesian coordinate sysiem, then ransformed into
a general nonorthogonal computational coordinate sysiem. The code is therefore not limited to any particular type
of geometry or coordinate system. The only requirement is that body-fitted coordinales must be used. In general,
the computational coordinate system for a particular gcometry must be created by a separate coordinale generation
code and stored in an unformatted file that Profeus can read. However, simple Caniesian and polar coordinate sys-
tems are built in.

The equations are solved at grid points that form a computational mesh within this computational coordinate
system. The number of grid points in each direction in the computational mesh is specified by the user. The loca-
tion of these grid points can be varied by packing them at either or both boundaries in any coordinate direction. The
transformation metrics and Jacobian are computed using finite differences in a manner consistent with the differenc-
ing of the governing equations.

33 FLOW AND REFERENCE CONDITIONS

As stated earlier, the equations solved by Proreus are for compressible flow. Incompressible conditions can be
simulated by running at a Mach number of around 0.1. Lower Mach numbers may lead 10 numerical problems. The
flow can be laminar or turbulent. The gas constant R is specified by the user, with the value for air as the defaulL
The specific heats ¢, and c,, the molecular viscosity u, and the thermal conductivity k can be treated as constants or
as functions of temperature. The empirical formulas used to relate these properties to temperature are contained in a
scparale subroutine, and can easily be modified if necessary. The perfect gas equation of state is used to relate pres-
sure, density, and temperature. This equation is also contained in a separale subroutine, which could be easily
modified if necessary. All equations and variables in the program are nondimensionalized by normalizing values
derived from reference conditions specified by the user, with values for sea leve! air as the default.

3.4 BOUNDARY CONDITIONS

The easiest way to specify boundary conditions in Profeus is by specifying the type of boundary (e.g., no-slip
adiabatic wall, subsonic inflow, periodic, etc.). The program will then select an appropriate set of conditions for that
boundary. For many applications this method should be sufficient. If necessary, however, the user may instead set
the individual boundary conditions on any or all of the computational boundaries.

A variety of individual boundary conditions are built into the Proreus code, including: (1) specified values
and/or gradients of Cartesian velocities u, v, and w, normal and tangential velocities V, and V,, pressure p, tempera-
ture T, and density p; (2) specified values of total pressure pr, total temperature T7, and flow angle; and (3) linear
extrapolation. Another useful boundary condition is a "no change from initial condition™ option for u, v, w, p, T, p,
pr. and/or T7. Provision is also made for user-written boundary conditions. Specified gradient boundary conditions
may be in the direction of the coordinate line imersecting the boundary or normal 10 the boundary, and may be com-
puted using two-point or three-point difference formulas. For all of these conditions, the same type and value may
be applied over the entire boundary surface, or a point-by-point distribution may be specified. Unsteady and time-
periodic boundary conditions are allowed when applied over the entire boundary.

3.5 INITIAL CONDITIONS

Initial conditions are required throughout the flow field 1o start the time marching procedure. For unsteady flows
they should represent a real flow field. A converged steady-state solution from a previous run would be a good
choice. For steady flows, the ideal initial conditons would represent a real flow field that is close 10 the expected
final solution.

The best choice for initial conditions, therefore, will vary from problem to problem. For this reason Proteus
does not include a general-purpose routine for setting up initial conditions. The user must supply a subroutine,
called INIT, that sets up the initial starting conditions for the time marching procedure. A version of INIT is, how-
ever, built into Proteus thal specifies uniform flow with constant flow properties everywhere in the flow field. These
conditions, of course, do represent a solution to the goveming equations, and for many problems may help minimize
starting transients in the time marching procedure. However, realistic initial conditions that are closer 10 the
expected final solution should lead to quicker convergence.

142



3.6 TIME STEP SELECTION -

Several different options are available for choosing the time siep AT, and for modifying it as the solution
proceeds. At may be specified directly, or through a value of the Courant-Friedrichs-Lewy (CFL) number. When
specifying a CFL number, the time step may be either global (i.c., constant in space) based on the minimum CFL
limit, or local (i.e., varying in space) based on the local CFL limit. For unsteady time-accurate flows global values
should be used, but for steady flows using local values may lead to faster convergence. Options are available to
increase or decrease At as the solution proceeds based on the change in the dependent variables. An option is also
available to cycle A7 between two values in a logarithmic progression over a specified number of time steps.

3.7 CONVERGENCE

Five options are currenly available for determining convergence. The user specifies a convergence criterion £
for each of the governing equations. Then, depending on the option chosen, convergence is based on: (1) the abso-
lute value of the maximum change in the conservation variables AQmg, Over a single time step; (2) the absolute
value of the maximum change AQn,, averaged over a specified number of time sieps, (3) the L, norm of the resi-
dual for each equation; (4) the average residual for each equation; or (5) the maximum residual for each equation.

It should be noted, however, that convergence is in the eye of the beholder. The amount of decrease in the resi-
dual necessary for convergence will vary from problem to problem. For some problems, it may be more appropriate
to measure convergence by some flow-relaied parameter, such as the lift coefficient for an airfoil. Determining
when a solution is sufficiently converged is, in some respects, a skill best acquired through experience.

3.8 INPUT/OUTPUT

Input to Proreus is through a series of namelists and, in general, an unformatied file containing the compula-
tional coordinate system. All of the input parameters have default values and only need to be specified by the user if
a different value is desired. Reference conditions may be specified in either English or S1 units. A restart option is
also available, in which the computational mesh and the initial Aow field are read from unformatted resiart files
created during an earlier run.

The standard printed output available in Proteus includes an echo of the input, boundary conditions, normalizing
and reference conditions, the computed flow field, and convergence information. The user controls exactly which
flow field parameters are printed, and at which time levels and grid points. Several debug options are also available
for detailed printout in various parts of the program.

In addition to the printed output, several unformatted files can be written for various purposes. The first is an
auxiliary file used for post-processing. usually called a plot file, that can be written at convergence or after the last
time step if the solution does not converge. Plot files can be written for the NASA Lewis plotting program CON-
TOUR or the NASA Ames plotling program PLOT3D. 1f PLOT3D is 10 be used, two unformatied files are created,
an xyz file containing the computational mesh and a ¢ file containing the computed flow field. Another unformatied
file written by Proteus contains detailed convergence information. This file is automatically incremented each lime
the solution is checked for convergence, and is used 10 generate the convergence history printout and with Lewis-
developed post-processing plotting routines. And finally, two unformatied files may be written at the end of a calcu-
Jation that may be used to restart the calculation in a later run. One of these contains the computational mesh, and
the other the computed flow field.

39 TURBULENCE MODELS

. For turbulent flow, Proteus solves the Reynolds time-averaged Navier-Stokes equations, with turbulence
modeled using cither the Baldwin and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-
equation model.

39.1 Baldwin-Lomax Model. The Baldwin-Lomax model may be applied 10 either wall-bounded flows or to free
turbulent flows. For wall-bounded flows, the model is a two-layer model. For flows in which more than one boun-
dary is a solid surface, averaging procedures are used 1o determine a single u, profile. The wrbulent thermal con-
ductivity coefficient k, is computed using Reynolds analogy.

3.9.2 Chien k-¢ Model. With the Chien two-equation model, partial differential equations are solved for the tur-
bulent kinetic energy & and the turbulent dissipation rate &. These equations are lagged in time and solved
separately from the mean flow equations. In the 2-D Proteus code, the equations are solved using the same solution
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algorithm as for the mean flow equations, except that spatial derivatives for the convective terms are approximated
using first-order upwind differencing. In the 3-D code, they are solved by a two-sweep LU procedure, as described
by Hoffmann (1989). i

Since the Chien two-equation model is a low Reynolds number formulation, the £-¢ equations are solved in the
near-wall region. No additional approximations are needed. Boundary conditions that may be used include: (1) no
change from initial or restart conditions for k and ¢; (2) specified values and/or gradients of k and ¢; and (3) linear
extrapolation. Specified gradient boundary conditions are in the direction of the coordinate line intersecting the
boundary, and may be computed using two-point or three-point difference formulas. For all of these conditions, the
same type and value may be applied over the entire boundary surface, or a point-by-point distribution may be
specified. Spatially periodic boundary conditions for k and £ may also be used. Unsteady boundary conditions are
not available for the k-¢ equations. However, unsteady flows can still be computed with the Chien mode! using the
unsteady boundary condition option for the mean flow quantities and appropriate boundary conditions for k and ¢,
such as specified gradients or linear extrapolation.

Initial conditions for k and ¢ are required throughout the flow field to stan the time marching procedure. The
best choice for initial conditions will vary from problem to problem, and the user may supply a subroutine, called
KEINTT, that sets up the initial values of k and ¢ for the time marching procedure. A version of KEINIT is built
into Proteus that computes the initial values from a mean initial or restart flow ficld based on the assumption of local
equilibrium (i.e., production equals dissipation.) Variations of that scheme have been found to be useful in comput-
ing initial k and ¢ values for a variety of wrbulent flows.

The time step used in the solution of the k-¢ equations is normally the same as the time step used for the mean
flow equations. However, the user can alier the time siep, making it larger or smaller than the time siep for the
mean flow equations, by specifying a multiplication factor. The user can also specify the number of k-¢ iterations
per mean flow iteration.

4. VERIFICATION CASES

Throughout the Proteus development effort, verification of the code has been emphasized. A variety of cases
have been run, and the computed results have been compared with both experimental data and exact solutions.
Some cases are included in Volume 2 of the Proteus documentation (Towne, Schwab, Benson, and Suresh, 1990).
Other cases have been reported by Conley and Zeman (1991), Saunders and Keith (1991), and Bui (1992).

Three cases are presented in this paper — flow past a circular cylinder, flow through a transonic diffuser, and
flow through a square—cross-sectioned S-duct.

4.1 FLOW PAST A CIRCULAR CYLINDER

In this test case, steady flow past a two-dimensional circular cylinder was investigated. Both Euler and laminar
viscous flow were computed.

4.1.1 Reference Conditions. In order to allow comparison of the Proteus results with incompressible experimental
data and with potential flow results, this case was run with a low reference Mach number of 0.2. The cylinder
radius was used as the reference length, and was set equal to 1 fi. Standard sca level conditions of 519 °R and
0.07645 1b,, /ft* were used for the reference temperature and density. The Reynolds number based on cylinder
diameter was 40, maiching the experimental value.

4.12 Computational Coordinates. For this problem a polar computational coordinate system was the obvious
choice. The radial coordinate r varied from 1 at the cylinder surface to 30 at the outer boundary. Since the flow is
symmetric, only the top half of the flow field was computed. The circumferential coordinate 8 thus varied from 0°
at the cylinder leading edge 1o 180° at the trailing edge. For the Euler flow case, a 21 (circumferential) x 51 (radia!)
mesh was used, with the radial grid packed moderately tightly near the cylinder surface. For the viscous flow case,
a 5151 mesh was used, with the radial grid packed more tightly near the cylinder surface.

4.1.3 Initial Conditions. Constant stagnation enthalpy was assumed, so only three initial conditions were required.
For the Euler flow case, uniform flow withu =1, v =0, and p = 1 was used.

For the viscous flow case, the exact polential flow solution was used to set the initial conditions at all the non-
wall points. Thus, with nondimensional free stream conditions of p. = 4. =T. =p. =1, the initial conditions
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were

u=1- —lz-cos(28)
r

v = - =sin(26)
r

1 puu?+v?)
p=Pr)=- ) R

where

2
1 Pulle
(pT)-—p-’+ 2 R

At the cylinder surface, the initial velocities u and v were set equal 10 2€ro, and the pressure p was set equal 10 the
pressure at the grid point adjacent 1o the surface. Thus, with two-point one-sided differencing, op /on =0 at the
surface.

4.1.4 Boundary Conditions. Again, since we assumed constant stagnation enthalpy, only three boundary condi-
tions were required at each computational boundary. For the Euler flow case, symmetry conditions were used along
the symmetry line ahead of and behind the cylinder. At the cylinder surface, the radial velocity and the radial gra-
dient of the circumferential velocity were sel equal to zero. The radial gradient of pressure was computed from the

polar coordinate form of the incompressible radial momentum equation written at the wall. The equation is (Hughes
and Gaylord, 1964)

where v, and v, are the radial and circumferential velocities, respectively. At the cylinder surface, v, = 0. Thus,

2 2,02
Qg\= Yo _ u'tv
or P r P r

And finally, at the outer boundary the free stream conditions were specified as boundary conditions.

For the viscous flow case, symmetry conditions were again used along the symmetry line ahead of and behind
the cylinder. At the cylinder surface, no-slip conditions were used for the velocity, and the radial pressure gradient
was set equal to zero. The outer boundary was split into an inlet region and wake region. The split was made,
somewhat arbitrarily, at 8 = 135°. In the inlet region, the boundary values of u, v, and p were kept at their initial
values, which were the potential flow values. In the wake region, the boundary values of p were kepi at their initial
values, and the radial gradients of 4 and v were scl equal to zero.

4.1.5 Numerics. Both the Euler and viscous flow cases were run using a spatially varying time step, with a local
CFL number of 10. The constant coefficient antificial viscosity mode! was used, with &, =2 and £f = 1.

The Euler flow case converged in 210 time sieps, and the viscous flow case converged in 360 time steps. The
convergence criterion for both cases was that the L, norm of the residual for each equation drop below 0.001.

2. Noie that the nondimensional gas constant R appears in these equations. This is because, in the Profeus inpul and oulput, the pressure is
nondimensionalized by p.RT,. Iniemal to the code, pressure is nondismensionalized by p.u?, as described in Section 2.1.
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4.1.6 Computed Results. In Figure 1 the computed static pressure cocfficient, defined as (p-p,)/ (p,u? [2g.) is
plotted as a function of 6 for both the Euler and viscous flow cases. Also shown are the experimental data of Grove,
Shair, Petersen, and Acrivos (1964), and the exact solution for potential flow. The Proteus results agree well with
the data for the viscous flow case, and with the exact potential flow solution for the Euler flow case.

1 ,ﬁl
— Proleus Viscous Results L7 -
=== = Proteus Euler Results o
O  Experimental Data ’,’
o F Y O  Exact Polential Flow

Static Pressure Coefficient, Cp
N A
T 1
.g
q

0 30 60 90 120 150 180
Circumferential Location, 8, Degrees

Figure 1. Pressure coefficient for flow past a circular cylinder.

4.2 TRANSONIC DIFFUSER FLOW

In this test case, two-dimensional transonic turbulent flow was computed in a converging-diverging duct. Tur-
bulence was modeled using the Baldwin-Lomax model. The flow entered the duct subsonically, accelerated through
the throat to supersonic speed, then decelerated through a normal shock and exited the duct subsonically. The com-
putational domain is shown in Figure 2.

n AY - ij:

mul
11

[l/

4 x

Figure 2. Computational domain for transonic diffuser flow.

4.2.1 Reference Conditions. The throat height of 0.14435 ft. was used as the reference length L,. The reference
velocity u, was 100 fysec. The reference temperature and density were 525,602 °R and 0.1005 by, / fi®, respec-
tively. These values match the inlet total temperature and total pressure used in other numerical simulations of this
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flow (Hsieh, Bogar, and Coakley, 1987). -

4.2.2 Computational Coordinates. The x coordinate for this duct runs from —4.04 0 +8.65. The Cartesian coordi-
nates of the bottom wall are simply y = 0 for all x. For the top wal), the y coordinate is given by (Bogar, Sajben, and
Kroutil, 1983)

14144 for x £-2.598
y ={acosh{ /(a-1+cosh{) for -2.998 <x <7.216
1.5 forx27.216
where the paramelter { is defined as

_ Cye/mlt+ Cax /1"
(a-x/x)

The various constants used in the formula for the top wall height in the converging (-2.598 Sx <0) and diverging
(0Sx $7.216) parts of the duct are given in the following table.

Constant Converging  Diverging

a 14114 1.5

X -2.598 7.216
C, 0.81 225
C, 1.0 0.0
C, 0.5 0.0
C, 0.6 0.0

A body-fitted coordinate system was generated for the duct, with 81 points in the x direction and 51 points in the
y direction. The coordinate system is shown in Figure 2. For clarity, the grid points are thinned by factors of 2 and
10 in the x and y directions, respectively. Note that for good resolution of the flow near the normal shock, the grid
defining the computational coordinate system is denser in the x direction in the region just downstream of the throat.
In the y direction, the actual computational mesh was tightly packed near both walls 10 resolve the wrbulent boun-
dary layers.

4.23 Initial Conditions. The initial conditions were simply zero velocity and constant pressure and iemperature.
Thus, u =v =0and p = T = 1 everywhere in the flow field.

4.2.4 Boundary Conditions. This calculation was performed in three scparate runs. In the first run, the exit static
pressure was gradually lowered 10 a value low enough (o establish supersonic flow throughout the diverging portion
of the duct. The pressure was lowered as follows:

0.99 for 1<n<100
p(1) =4-2.1405x10n +1.20405  for 101<n < 500
0.1338 for 501 <n <3001

where n is the time level. The equation for p for 101<a <500 is simply a linear interpolation beiween p = 0.99 and
p =0.1338. In the second run, the exit pressure was gradually raised to a value consistent with the formation of a
normal shock just downstream of the throat Thus,

0= 3.4327x10n -0.89636  for 3001 <n <5000
P82 for 5001 <n <6001

Again, the equation for p for 3001 <n < 5000 is simply a linear interpolation between p = 0.1338 and p=0.82. In
the third run, the exit pressure was kept constant at 0.82 for 6001 < n <9000.
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The remaining boundary conditions were the same for all runs. At the inlet, the total pressure and total tempera-
ture were set equal 10 1, and the y-velocity and the normal gradient of the x-velocity were both set equal to zero. Al
the exit, the normal gradients of temperature and both velocity components were set equal 10 zero. At both walls,
no-slip adiabatic conditions were used, and the normal pressure gradient was set equal to zero.

4.2.5 Numerics. The case was run using a spatially varying time step. The local CFL number was 0.5 for the first
two runs, and 5.0 for the third run. The nonlinear coefficient artificial viscosity model was used. For the first two
runs, the coefficients £® and ¢ were 0.1 and 0.005, respectively. For the third run, £ was lowered 10 0.0004.

The convergence criterion was that the absolute value of the maximum change in the conservation variables
AQ,: be less than 10°. At the end of the third run, the solution had not yet converged to this level. However,
close examination of several parameters near the end of the calculation indicates that the solution is no longer
changing appreciably with time, but oscillates slightly about some mean steady level. This type of result appears o
be fairly common, especially for flows with shock waves. The reason is not entirely clear, but may be related ©
inadequate mesh resolution, discontinuities in metric information, etc. For this particular case, the cause may also
be inherent unsteadiness in the flow. The experimental data for this duct show a self-sustained oscillation of the
normal shock at Mach numbers greater than about 1.3 (Bogar, Sajben, and Kroutil, 1983).

4.2.6 Computed Results. The computed flow field is shown in Figure 3 in the form of constant Mach number con-
tours.

Figure 3. Computed Mach number contours for transonic diffuser flow.

The flow enters the duct at about M = 0.46, accelerates to just under M = 1.3 slightly downstream of the throat,
shocks down 10 about M = 0.78, then decelerates and leaves the duct at about M =0.51. The normal shock in the
throat region and the growing boundary layers in the diverging section can be seen clearly. Because this is a shock
capturing analysis, the normal shock is smeared in the streamwise direction.

The computed distribution of the static pressure ratio along the top and bottom walls is compared with expen-
mental data (Hsieh, Wardlaw, Collins, and Coakley, 1987) in Figure 4. The static pressure ratio is here defined as
P/ (Pr)o. where (pr), is the inlet core total pressure.
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Figure 4. Computed and experimental static pressure distribution for transonic diffuser flow.

The computed results generally agree well with the experimental data, including the jump conditions across the
normal shock. The predicted shock position, however, is slightly downstream of the experimentally measured posi-
tion. The pressure change, of course, is also smeared over a finite distance. There is also some disagreement
between analysis and experiment along the top wall near the inlet. This may be due to rapid changes in the wall
contour in this region without sufficient mesh resolution.

43 TURBULENT S-DUCT FLOW

In this test case, three-dimensional turbulent flow in an S-duct was computed using first the Baldwin-Lomax
algebraic turbulence model and then the Chien k-¢ wrbulence model. The S-duct consisted of two 22.5° bends with
a constant area square cross section. The geometry and experimental data were obtained from a test conducted by
Taylor, Whitelaw, and Yianneskis (1982).

4.3.1 Reference Conditions. The default standard sea level conditions for air of 519 °R and 0.07645 iby, / ft> were
used for the reference temperature and density. The specific heat ratio y, was set to 1.4. Since the experiment was
incompressible, the reference Mach number M, was set equal to 0.2 o minimize compressibility effects and, at the
same time, achieve a reasonable convergence rate with the Proteus code. In the experiment, the Reynolds number
based on the bulk velocity and the hydraulic diameter was 40,000. This value was therefore used as the reference
Reynolds number Re, in the calculation. The reference length L, was sct equal 10 0.028658 ft. This value was com-
puted from the definition of Re,, where M, and Sutherland’s law were used 10 compute &, and 4, respectively.

432 Computational Coordinates. Figure 5 illustrates the computational grid for the S-duct, created using the
GRIDGEN codes (Steinbrenner, Chawner, and Fouts, 1991). For clarity, the grid is shown only on three of the
computational boundaries, and the points have been thinned by a factor of two in each direction. The boundary
grids were first created using the GRIDGEN 2D program. The 3-D volumetric grid was then generated from the
boundary grids using GRIDGEN 3D.
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Figure 5. S-duct computational grid.

The computational grid extended from 7.5 hydraulic diameters upsiream of the start of the first bend, to 7.5
hydraulic diameters downstream of the end of the second bend. The grid consisted of 81 x 31 x 61 points in the £, 7,
and ¢ directions, respectively. Since the S-duct is symmetric with respect to the n = 1 plane, only half of the duct
was computed. To resolve the viscous layers, grid points were tightly packed near the solid walls using the default
packing option in GRIDGEN 2D. At the grid point nearest the wall, the value of y * was about 0.5.

'4.3.3 Initial Conditions. The computations were done in two separate major sieps: a calculation using the

Baldwin-Lomax turbulence model and a calculation using the Chien k-¢ model. To stant the Baldwin-Lomax calcu-
lations, the default initial profiles specified in subroutine INIT were used. Thus, the static pressure p was set equal
to 1.0, and the velocity components , v, and w were set equal 10 0.0 everywhere in the duct. To start the Chien k-£
calculations, the initial values of u, v, w, p, and the wrbulent viscosity gz, were obtained from the Baldwin-Lomax
solution. The initial values of k and ¢ were obtained using the default KEINIT subroutine in Proteus.

4.3.4 Boundary Conditions. For both calculations, constant stagnation enthalpy was assumed, eliminating the
need for solving the energy equation. Therefore, only four boundary conditions were required for the mean flow at
each computational boundary. In addition, for the Chien calculation, boundary conditions were required for k and £
at each computational boundary.

For the Baldwin-Lomax calculation, at the duct inlet the total pressure was specified as 1.02828, the gradient of
u was set equal to zero, and the velocities v and w were set equal to zero. The inlet total pressure was calculated
from the freestream static pressure and the reference Mach number using isentropic relations. At the duct exit, the
static pressure was specified as 0.98416, and the gradients of «, v, and w were set equal 10 zero. The exit static pres-
sure was found by trial and error in order to maich the experimental mass flow rate. At the walls of the duct no-slip
conditions were used for the velocities, and the normal pressure gradient was set to zero. Symmetry conditions
were used in the symmetry plane.

For the Chien calculation, the boundary conditions for the mean flow were the same as for the Baldwin-Lomax
calculation, with one exception. At the duct exit, the value of the static pressure was changed slightly, from 0.98416
to 0.98474, again in order 1o maich the experimental mass flow rate. For the k-£ equalions, at the upstream boun-
dary the gradients of the wrbulent kinetic energy  and the turbulent dissipation ra:z £ were set equal o zero for the
first 20 dme steps. Afier that time, the values of k and £ were kept constant. At the downstream boundary, the gra-
dients of k and ¢ were set equal 10 zero. No-slip conditions were used at the solid boundaries, and symmetry condi-
tions were used at the symmetry boundary.

4.3.5 Numerics. Both the Baldwin-Lomax and Chien calculations were run using a spatially varying time step.
Since the flow field for the Baldwin-Lomax calculation was impulsively started from zero velocity everywhere,
large CFL numbers specified at the very beginning of the calculation might result in an unphysical flow field and
cause the calculation to blow up. Therefore, the calculations were run with a CFL number of 1 for the first 100
iterations, 5 for the next 200 iterations, and 10 for the remaining iterations. A total of 4,000 iterations was used for
the Baldwin-Lomax calculation.
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For the Chien case, a small CFL number was again used at the beginning of the.calculation. The calculations
were run with a CFL number of 1 for the first 120 iterations, § for the next 500 iterations, and 10 for the remaining
iterations. A total of 2,520 iterations was used for the Chien calculation.

The constant coefficient artificial viscosity model was used for both cases, with ¢; =2 and e’ = 1.

The convergence criterion was that the average residual for each equation be less than 10°%. However, both cal-
culations were stopped before reaching this level of convergence when examination of several fiow-related parame-
ters indicated that the solution was no longer changing appreciably with time. The average residual at the end of the
Baldwin-Lomax calculation ranged from 10~ for the x-momentum equation to 3x10” 5 for the continuity equation.
For the Chien calculation the values were 3%10™ for the x-momentum equation and 5x107¢ for the continuity equa-
tion. For both cases the residuals were continuing to drop when the calculations were stopped.

4.3.6 Computed Results. In Figure 6, the computed flow field from the Chien calculation is shown in the form of
total pressure contours at five stations through the duct. (The upstream and downstream straight sections are not
shown.) As the flow enters the first bend, the boundary layer at the bottom of the duct initially thickens due 10 the
locally adverse pressure gradient in that region. In an S-duct, the high pressure at the outside (bottom) of the first
bend drives the low energy boundary layer toward the inside (top) of the bend, while the core flow responds to cen-
trifugal effects and moves toward the outside (bottom) of the bend. The result is a pair of counter-rotating secon-
dary flow vortices in the upper half of the cross-section. These secondary flows cause a significant amount of flow
distortion, as shown by the total pressure contours.

In the second bend, the direction of the cross-flow pressure gradients reverses, making the pressure higher in the
upper half of the cross-section. However, the flow enters the second bend with a voriex patiern already established.
The net effect is to tighten and concentrate the existing vortices near the top of the duct, in agreement with classical
secondary flow theory. The resulting horseshoe-shaped distortion patiern at the exit of the second bend is typical of
S-duct flows.

Figure 6. Computed total pressure contours for wrbulent S-duct flow.

In Figure 7, the calculated wall pressure distribution is compared with the experimental data of Taylor, Whi-
telaw, and Yianneskis (1982). The agreement is very good. Both turbulence models correctly predicted the pres-
sure trend and the pressure loss along the duct. The r and z coordinates noted in the legend are the same as those
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defined by Taylor, Whitelaw, and Yianneskis.
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Figure 7. Computed surface static pressure distribution for urbulent S-duct flow.

In Figure 8, the experimental and computed velocity profiles in the symmetry plane are shown for the five
streamwise stations that were surveyed in the experiment. These survey stations are at the same locations as the
total pressure contours shown in Figure 6. The agreement between computation and experiment is excellent for
both turbulence models. The asymmetry in the velocity profiles due to the pressure induced secondary motion is
correctly predicted.
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Figure 8. Computed streamwise velocity profiles for wrbulent S-duct flow.

5. CONCLUDING REMARKS

The Proteus two- and three-dimensional Navier-Stokes codes recently developed at NASA Lewis have been
described, and resulis have been presented from some of the validation cases. Version 1.0 of the two-dimensional
code was released in late 1989 (Towne, Schwab, Benson, and Suresh, 1990), and version 2.0 was released in late
1991. Version 1.0 of the three-dimensional code was released in early 1992. Documentation for version 2.0 of the
wo-dimensional code and for version 1.0 of the three-dimensional code is available, but has not yet been formally

published.

Current development work on the Proteus codes is being done to add a multiple-zone grid capability, a mult-
grid convergence acceleration capability, and additional wrbulence modeling options.

A wide variety of validation cases have been run, including: (1) several simplified flows for which exact
Navier-Stokes solutions exist; (2) laminar and wrbulent flat plate boundary layer flows; (3) two- and three-
dimensional driven cavity flows; (4) flows with normal and oblique shock waves; (5) steady and unsteady flows past
a cylinder; (6) developing Jaminar and turbulent flows in channels, pipes, and rectangular ducts; (7) steady and
unsteady flows in a transonic diffuser; (8) flows in curved and S-shaped ducts; and (9) trbulent flow on a fiat plate
with a glancing shock wave. Current and future validation cases will emphasize three-dimensional duct flows and
flows with heat transfer.
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