Experimental study of excited states of 62{}^{62}Ni via one-neutron (d,p)(d,p) transfer up to the neutron-separation threshold and characteristics of the pygmy dipole resonance states

Abstract

The degree of collectivity of the Pygmy Dipole Resonance (PDR) is an open question. Recently, Ries {\it et al.} have suggested the onset of the PDR beyond N=28N=28 based on the observation of a significant E1E1 strength increase in the Cr isotopes and proposed that the PDR has its origin in a few-nucleon effect. Earlier, Inakura {\it et al.} had predicted by performing systematic calculations using the random-phase approximation (RPA) with the Skyrme functional SkM* that the E1E1 strength of the PDR strongly depends on the position of the Fermi level and that it displays a clear correlation with the occupation of orbits with orbital angular momenta less than 33\hbar (l2)(l \leq 2). To further investigate the microscopic structures causing the possible formation of a PDR beyond the N=28N=28 neutron shell closure, we performed a 61^{61}Ni(d,p)62(d,p){}^{62}Ni experiment at the John D. Fox Superconducting Linear Accelerator Laboratory of Florida State University. To determine the angular momentum transfer populating possible Jπ=1J^{\pi} = 1^- states and other excited states of 62{}^{62}Ni, angular distributions and associated single-neutron transfer cross sections were measured with the Super-Enge Split-Pole Spectrograph. A number of Jπ=1J^{\pi} = 1^- states were observed below the neutron-separation threshold after being populated through l=2l=2 angular momentum transfers. A comparison to available (γ,γ)(\gamma,\gamma') data for 58,60{}^{58,60}Ni provides evidence that the B(E1)B(E1) strength shifts further down in energy. The (d,p)(d,p) data clearly prove that l=0l=0 strength, i.e., the neutron (2p3/2)1(3s1/2)+1(2p_{3/2})^{-1}(3s_{1/2})^{+1} one-particle-one-hole configuration plays only a minor role for 11^- states below the neutron-separation threshold in 62{}^{62}Ni.Comment: 15 pages, 8 figures, accepted for publication in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions