2,470 research outputs found
Turbulence attenuation by large neutrally buoyant particles
Turbulence modulation by inertial-range-size, neutrally-buoyant particles is
investigated experimentally in a von K\'arm\'an flow. Increasing the particle
volume fraction , maintaining constant impellers Reynolds
number attenuates the fluid turbulence. The inertial-range energy transfer rate
decreases as , suggesting that only particles
located on a surface affect the flow. Small-scale turbulent properties, such as
structure functions or acceleration distribution, are unchanged. Finally,
measurements hint at the existence of a transition between two different
regimes occurring when the average distance between large particles is of the
order of the thickness of their boundary layers.Comment: 7 pages, 4 figure
Evaluation of the ADVIA (R) Centaur (TM) TSH-3 assay
An analytical evaluation of the thyroid stimulating hormone (TSH-3) assay on the Sayer ADVIA(R) Centaur(TM) immunoassay system was performed. General analytical requirements (linearity, resistance to typical interferences, absence of a carry-over effect) were fulfilled and reproducibility was satisfactory. Inter-assay coefficient of variation (CV) of a human serum pool with a concentration of 0.014 mU/l was 22.3%; at concentrations between 0.26 and 83 mU/l CV was below 6%. Method comparison study demonstrated close agreement of TSH results compared to those obtained with the Roche Elecsys(R) 2010 TSH assay (ADVIA Centaur = 1.08 x Elecsys - 0.18 mU/l; r = 0.987; n = 324). Handling and practicability of the ADVIA Centaur system proved to be convenient with a very high sample throughput. We conclude that the ADVIA Centaur TSH-3 assay meets requirements for clinical use
Detection of pathological myopia by PAMELA with texture-based features through an SVM approach
10.1260/2040-2295.1.1.1Journal of Healthcare Engineering111-1
Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction
The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision
Plastron osteotomy in the management of fishing hook ingestion in a Malayan box turtle (Cuora amboinensis)
An adult male Malayan box turtle was diagnosed with foreign body obstruction of fishing hook. Upon presentation, the animal had pale mucous membrane and fishing line protruding out from the oral cavity. Diagnosis of foreign body ingestion was based on plain radiograph where the fishing hook was evidenced on the lateral and ventrodorsal radiographic view. Plastron osteotomy surgical removal was performed after endoscopy guided forcep removal failed. Procedures were carried out under the injectable anesthesia using a combination of ketamine and xylazine hydrochloride. Antibiotic, anti-inflammatory and parenteral fluid therapy was given pre and post-surgically as medical treatment and stabilisation
Evaluating the coverage and potential of imputing the exome microarray with next-generation imputation using the 1000 genomes project
10.1371/journal.pone.0106681PLoS ONE991-
Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO/SrTiO Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission
LaNiO (LNO) is an intriguing member of the rare-earth nickelates in
exhibiting a metal-insulator transition for a critical film thickness of about
4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such
thin films also show a transition to a metallic state in superlattices with
SrTiO (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to
better understand this transition, we have studied a strained LNO/STO
superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an
(LaAlO)(SrAlTaO) substrate using soft x-ray
standing-wave-excited angle-resolved photoemission (SWARPES), together with
soft- and hard- x-ray photoemission measurements of core levels and
densities-of-states valence spectra. The experimental results are compared with
state-of-the-art density functional theory (DFT) calculations of band
structures and densities of states. Using core-level rocking curves and x-ray
optical modeling to assess the position of the standing wave, SWARPES
measurements are carried out for various incidence angles and used to determine
interface-specific changes in momentum-resolved electronic structure. We
further show that the momentum-resolved behavior of the Ni 3d eg and t2g states
near the Fermi level, as well as those at the bottom of the valence bands, is
very similar to recently published SWARPES results for a related
LaSrMnO/SrTiO superlattice that was studied using the
same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which
further validates this experimental approach and our conclusions. Our
conclusions are also supported in several ways by comparison to DFT
calculations for the parent materials and the superlattice, including
layer-resolved density-of-states results
Dense active matter model of motion patterns in confluent cell monolayers
Epithelial cell monolayers show remarkable displacement and velocity
correlations over distances of ten or more cell sizes that are reminiscent of
supercooled liquids and active nematics. We show that many observed features
can be described within the framework of dense active matter, and argue that
persistent uncoordinated cell motility coupled to the collective elastic modes
of the cell sheet is sufficient to produce swirl-like correlations. We obtain
this result using both continuum active linear elasticity and a normal modes
formalism, and validate analytical predictions with numerical simulations of
two agent-based cell models, soft elastic particles and the self-propelled
Voronoi model together with in-vitro experiments of confluent corneal
epithelial cell sheets. Simulations and normal mode analysis perfectly match
when tissue-level reorganisation occurs on times longer than the persistence
time of cell motility. Our analytical model quantitatively matches measured
velocity correlation functions over more than a decade with a single fitting
parameter.Comment: updated version accepted for publication in Nat. Com
Advanced Glycation End-Products Suppress Mitochondrial Function and Proliferative Capacity of Achilles Tendon-Derived Fibroblasts
Debilitating cases of tendon pain and degeneration affect the majority of diabetic individuals. The high rate of tendon degeneration persists even when glucose levels are well controlled, suggesting that other mechanisms may drive tendon degeneration in diabetic patients. The purpose of this study was to investigate the impact of advanced glycation end-products on tendon fibroblasts to further our mechanistic understanding of the development and progression of diabetic tendinopathy. We proposed that advanced glycation end-products would induce limitations to mitochondrial function and proliferative capacity in tendon-derived fibroblasts, restricting their ability to maintain biosynthesis of tendon extracellular matrix. Using an in-vitro cell culture system, rat Achilles tendon fibroblasts were treated with glycolaldehyde-derived advanced glycation end-products (0, 50, 100, and 200 μg/ml) for 48 hours in normal glucose (5.5 mM) and high glucose (25 mM) conditions. We demonstrate that tendon fibroblasts treated with advanced glycation end-products display reduced ATP production, electron transport efficiency, and proliferative capacity. These impairments were coupled with alterations in mitochondrial DNA content and expression of genes associated with extracellular matrix remodeling, mitochondrial energy metabolism, and apoptosis. Our findings suggest that advanced glycation end-products disrupt tendon fibroblast homeostasis and may be involved in the development and progression of diabetic tendinopathy
Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention.
The aim of this review was to quantify the global variation in childhood myopia prevalence over time taking account of demographic and study design factors. A systematic review identified population-based surveys with estimates of childhood myopia prevalence published by February 2015. Multilevel binomial logistic regression of log odds of myopia was used to examine the association with age, gender, urban versus rural setting and survey year, among populations of different ethnic origins, adjusting for study design factors. 143 published articles (42 countries, 374 349 subjects aged 1-18 years, 74 847 myopia cases) were included. Increase in myopia prevalence with age varied by ethnicity. East Asians showed the highest prevalence, reaching 69% (95% credible intervals (CrI) 61% to 77%) at 15 years of age (86% among Singaporean-Chinese). Blacks in Africa had the lowest prevalence; 5.5% at 15 years (95% CrI 3% to 9%). Time trends in myopia prevalence over the last decade were small in whites, increased by 23% in East Asians, with a weaker increase among South Asians. Children from urban environments have 2.6 times the odds of myopia compared with those from rural environments. In whites and East Asians sex differences emerge at about 9 years of age; by late adolescence girls are twice as likely as boys to be myopic. Marked ethnic differences in age-specific prevalence of myopia exist. Rapid increases in myopia prevalence over time, particularly in East Asians, combined with a universally higher risk of myopia in urban settings, suggest that environmental factors play an important role in myopia development, which may offer scope for prevention
- …