211 research outputs found
Delivering the promises of trait-based approaches to the needs of demographic approaches, and vice versa
1. Few facets of biology vary more than functional traits and lifeâhistory traits. To explore this vast variation, functional ecologists and population ecologists have developed independent approaches that identify the mechanisms behind and consequences of trait variation.
2. Collaborative research between researchers using traitâbased and demographic approaches remains scarce. We argue that this is a missed opportunity, as the strengths of both approaches could help boost the research agendas of functional ecology and population ecology.
3. This special feature, which spans three journals of the British Ecological Society due to its interdisciplinary nature, showcases stateâofâtheâart research applying traitâbased and demographic approaches to examine relationships between organismal function, life history strategies and population performance across multiple kingdoms. Examples include the exploration of how functional trait Ă environment interactions affect vital rates and thus explain population trends and species occurrence; the coordination of seed traits and dispersal ability with the pace of life in plants; the incorporation of functional traits in dynamic energy budget models; or the discovery of linkages between microbial functional traits and the fastâslow continuum.
4. Despite their historical isolation, collaborative work between functional ecologists and population ecologists could unlock novel research pathways. We call for an integrative research agenda to evaluate which and when traits are functional, as well as their ability to describe and predict life history strategies and population dynamics. We highlight promising, complementary research avenues to overcome current limitations. These include a more explicit linkage of selection gradients in the context of functional traitâvital rate relationships, and the implementation of standardised protocols to track changes in traits and vital rates over time at the same location and individuals, thus allowing for the explicit incorporation of tradeâoffs in analyses of covariation of functional traits and lifeâhistory traits
Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences
Abstract Traits have become a crucial part of ecological and evolutionary sciences, helping researchers understand the function of an organism's morphology, physiology, growth and life history, with effects on fitness, behaviour, interactions with the environment and ecosystem processes. However, measuring, compiling and analysing trait data comes with dataâscientific challenges. We offer 10 (mostly) simple rules, with some detailed extensions, as a guide in making critical decisions that consider the entire life cycle of trait data. This article is particularly motivated by its last rule, that is, to propagate good practice. It has the intention of bringing awareness of how data on the traits of organisms can be collected and managed for reuse by the research community. Trait observations are relevant to a broad interdisciplinary community of field biologists, synthesis ecologists, evolutionary biologists, computer scientists and database managers. We hope these basic guidelines can be useful as a starter for active communication in disseminating such integrative knowledge and in how to make trait data futureâproof. We invite the scientific community to participate in this effort at http://opentraits.org/bestâpractices.html
Measurement invariance of the Internet Gaming Disorder ScaleâShort-Form (IGDS9-SF) between Australia, the USA, and the UK
The Internet Gaming Disorder Scale-Short-Form (IGDS9-SF) is widely used to assess Internet Gaming Disorder behaviors. Investigating cultural limitations and implications in its applicability is imperative. One way to evaluate the cross-cultural feasibility of the measure is through measurement invariance analysis. The present study used Multigroup Confirmatory Factor Analysis (MGCFA) to examine the IGDS9-SF measurement invariance across gamers from Australia, the United States of America (USA), and the United Kingdom (UK). To accomplish this, 171 Australian, 463 USA, and 281 UK gamers completed the IGDS9-SF. Although results supported the one-factor structure of the IGD construct, they indicated cross-country variations in the strength of the relationships between the indicators and their respective factor (i.e., non-invariant loadings of items 1, 2, 5), and that the same scores may not always indicate the same level of IGD severity across the three groups (i.e., non-invariant intercepts for items 1, 5, 7, 9)
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Replication Fork Reversal after ReplicationâTranscription Collision
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replicationâtranscription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replicationâtranscription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle
Pulsations in main sequence OBAF-type stars
CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (Mââ„ââ1.3âMâ) of spectral types O, B, A, or F, known as ÎČ Cep, slowly pulsating B (SPB), ÎŽ Sct, and Îł Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the ÎŽ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The ÎŽâSct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive periodâluminosity relation for ÎŽ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of ÎŽ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes
Gaia Early Data Release 3 Acceleration of the Solar System from Gaia astrometry
Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions. Aims. The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution. Methods. Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate. Results. Our best estimate of the acceleration based on Gaia EDR3 is (2.32 +/- 0.16) x 10(-10) m s(-2) (or 7.33 +/- 0.51 km s(-1) Myr-1) towards alpha = 269.1 degrees +/- 5.4 degrees, delta = -31.6 degrees +/- 4.1 degrees, corresponding to a proper motion amplitude of 5.05 +/- 0.35 mu as yr(-1). This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 mu as yr(-1).Peer reviewe
- âŠ