168 research outputs found
Peritoneal Dialysis-Related Peritonitis Due to Staphylococcus aureus: A Single-Center Experience over 15 Years
Peritonitis caused by Staphylococcus aureus is a serious complication of peritoneal dialysis (PD), which is associated with poor outcome and high PD failure rates. We reviewed the records of 62 S. aureus peritonitis episodes that occurred between 1996 and 2010 in the dialysis unit of a single university hospital and evaluated the host and bacterial factors influencing peritonitis outcome. Peritonitis incidence was calculated for three subsequent 5-year periods and compared using a Poisson regression model. The production of biofilm, enzymes, and toxins was evaluated. Oxacillin resistance was evaluated based on minimum inhibitory concentration and presence of the mecA gene. Logistic regression was used for the analysis of demographic, clinical, and microbiological factors influencing peritonitis outcome. Resolution and death rates were compared with 117 contemporary coagulase-negative staphylococcus (CoNS) episodes. The incidence of S. aureus peritonitis declined significantly over time from 0.13 in 1996–2000 to 0.04 episodes/patient/year in 2006–2010 (p = 0.03). The oxacillin resistance rate was 11.3%. Toxin and enzyme production was expressive, except for enterotoxin D. Biofilm production was positive in 88.7% of strains. The presence of the mecA gene was associated with a higher frequency of fever and abdominal pain. The logistic regression model showed that diabetes mellitus (p = 0.009) and β-hemolysin production (p = 0.006) were independent predictors of non-resolution of infection. The probability of resolution was higher among patients aged 41 to 60 years than among those >60 years (p = 0.02). A trend to higher death rate was observed for S. aureus episodes (9.7%) compared to CoNS episodes (2.5%), (p = 0.08), whereas resolution rates were similar. Despite the decline in incidence, S. aureus peritonitis remains a serious complication of PD that is associated with a high death rate. The outcome of this infection is negatively influenced by host factors such as age and diabetes mellitus. In addition, β-hemolysin production is predictive of non-resolution of infection, suggesting a pathogenic role of this factor in PD-related S. aureus peritonitis
The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura
Abstract
We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis
Volatile and trace elements in basaltic glasses from Samoa : implications for water distribution in the mantle
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 241 (2006): 932-951, doi:10.1016/j.epsl.2005.10.028.We report volatile (H2O, CO2, F, S, Cl) and trace element data for submarine alkalic basalt
glasses from the three youngest Samoan volcanoes, Ta’u, Malumalu and Vailulu’u. Most
samples are visibly sulfide saturated, so have likely lost some S during fractionation. Cl/K ratios
(0.04 – 0.15) extend to higher values than pristine MORBs, but are suspected to be partly due to
source differences since Cl/K roughly varies as a function of 87Sr/86Sr. There are no resolvable
differences in the relative enrichment of F among sources, and compatibility of F during mantle
melting is established to be nearly identical to Nd. Shallow degassing has affected CO2 in all
samples, and H2O only in the most shallowly erupted samples from Vailulu’u. Absolute water
contents are high for Samoa (0.63 – 1.50 wt%), but relative enrichment of water compared to
equally incompatible trace elements (Ce, La) is low and falls entirely below normal MORB
values. H2O/Ce (58 – 157) and H2O/La (120 – 350) correlate inversely with 87Sr/86Sr
compositions (0.7045 – 0.7089). This leads us to believe that, because of very fast diffusion of
hydrogen in mantle minerals, recycled lithospheric material with high initial water and trace
element content will lose water to the drier ambient mantle during storage within the inner Earth.
The net result is the counter-intuitive appearance of greater dehydration with greater mantle
enrichment. We expect that subducted slabs will experience a two-stage dehydration history, first
within subduction zones and then in the ambient mantle during long-term convective mixing
Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction
The mechanisms that drive the upwelling of chemical heterogeneity from the lower to upper mantle (e.g., thermal versus compositional buoyancy) are key to our understanding of whole mantle con- vective processes. We address these issues through a receiver function study on new seismic data from recent deployments located on the Afar Triple Junction, a location associated with deep mantle upwelling. The detailed images of upper mantle and mantle transition zone structure illuminate features that give insights into the nature of upwelling from the deep Earth. A seismic low-velocity layer directly above the mantle transition zone, interpreted as a stable melt layer, along with a prominent 520 km discontinuity sug- gest the presence of a hydrous upwelling. A relatively uniform transition zone thickness across the region suggests a weak thermal anomaly (<100 K) may be present and that upwelling must be at least partly driven by compositional buoyancy. The results suggest that the lower mantle is a source of volatile rich, chemically distinct upwellings that influence the structure of the upper mantle, and potentially the chemis- try of surface lavas
Oxygen isotope heterogeneity of the mantle beneath the Canary Islands : insights from olivine phenocrysts
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 162 (2011): 349-363, doi:10.1007/s00410-010-0600-5.A relatively narrow range of oxygen isotopic ratios (δ18O = 5.05.4‰) is preserved in olivine of mantle xenoliths, mid-ocean ridge (MORB) and most ocean island basalts (OIB). The values in excess of this range are generally attributed either to the presence of a recycled component in the Earth’s mantle or to shallow level contamination processes. A viable way forward to trace source heterogeneity is to find a link between chemical (elemental and isotopic) composition of the earlier crystallized mineral phases (olivine) and the composition of their parental magmas, then using them to reconstruct the composition of source region. The Canary hotspot is one of a few that contains ~1-2 Ga old recycled ocean crust that can be traced to the core-mantle boundary using seismic tomography and whose origin is attributed to the mixing of at least three main isotopically distinct mantle components i.e., HIMU, DMM and EM. This work reports ion microprobe and single crystal laser fluorination oxygen isotope data of 148 olivine grains also analyzed for major and minor elements in the same spot. The olivines are from 20 samples resembling the most primitive shield stage picrite through alkali basalt to basanite series erupted on Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, Canary Islands, for which shallow level contamination processes were not recognized. A broad range of δ18Oolivine values from 4.6 to 6.1‰ was obtained and explained by stable, long-term oxygen isotope heterogeneity of crystal cumulates present under different volcanoes. These cumulates are thought to have crystallized from mantle derived magmas uncontaminated at crustal depth, representing oxygen isotope heterogeneity of source region. A relationship between Ni×FeO/MgO and δ18Oolivine values found in one basanitic lava erupted on El Hierro, the westernmost island of the Canary Archipelago, was used to estimate oxygen isotope compositions of partial melts presumably originated from peridotite (HIMU-type component inherited its radiogenic isotope composition from ancient, ~12 Ga, recycled ocean crust) and pyroxenite (young, <1 Ga, recycled oceanic crust preserved as eclogite with depleted MORB-type isotopic signature) components of the Canary plume. The model calculations yield 5.2 and 5.9±0.3‰ for peridotite and pyroxenite derived melts, respectively, which appeared to correspond closely to the worldwide HIMU-type OIB and upper limit N-MORB δ18O values. This difference together with the broad range of δ18O variations found in the Canarian olivines cannot be explained by thermodynamic effects of oxygen isotopic fractionation and are believed to represent true variations in the mantle, due to oceanic crust and continental lithosphere recycling.This work was supported by the CNRS “poste rouge” grant to AG, the NSF EAR-CAREER-0844772 grant to IB and the CRPG-CNRS and at its initial stage by the DFG (grant SCHM 250/64) and the Alexander von Humboldt Foundation (Wolfgang Paul Award to A.V. Sobolev who provided access to the electron microprobe at the Max Planck Institute, Mainz, Germany)
Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism
Highlights:
• Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime
• MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere
• Continental insulation flow transferred HIMU mantle into the oceanic mantle
New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly
Aeromagnetic anomalies reveal the link between magmatism and tectonics during the early formation of the Canary Islands
The 3-D inverse modelling of a magnetic anomaly measured over the NW submarine edifice of the
volcanic island of Gran Canaria revealed a large, reversely-magnetized, elongated structure following
an ENE-WSW direction, which we interpreted as a sill-like magmatic intrusion emplaced during the
submarine growth of this volcanic island, with a volume that could represent up to about 20% of the
whole island. The elongated shape of this body suggests the existence of a major crustal fracture in the
central part of the Canary Archipelago which would have favoured the rapid ascent and emplacement of
magmas during a time span from 0.5 to 1.9 My during a reverse polarity chron of the Earth’s magnetic
field prior to 16 Ma. The agreement of our results with those of previous gravimetric, seismological and
geodynamical studies strongly supports the idea that the genesis of the Canary Islands was conditioned
by a strike-slip tectonic framework probably related to Atlas tectonic features in Africa. These results do
not contradict the hotspot theory for the origin of the Canary magmatism, but they do introduce the
essential role of regional crustal tectonics to explain where and how those magmas both reached the
surface and built the volcanic edifices.Project CGL2015-63799-P of the
Spanish Ministry of Economy and Competitivenes
The Early Proterozoic Matachewan Large Igneous Province: Geochemistry, Petrogenesis, and Implications for Earth Evolution
The Matachewan Large Igneous Province (LIP) is interpreted to have formed during the early stages of mantle plume-induced continental break-up in the early Proterozoic. When the Matachewan LIP is reconstructed to its original configuration with units from the Superior Craton and other formerly adjacent blocks (Karelia, Kola, Wyoming and Hearne), the dyke swarms, layered intrusions and flood basalts, emplaced over the lifetime of the province, form one of the most extensive magmatic provinces recognized in the geological record. New geochemical data allow, for the first time, the Matachewan LIP to be considered as a single, coherent entity and show that Matachewan LIP rocks share a common tholeiitic composition and trace element geochemistry, characterized by enrichment in the most incompatible elements and depletion in the less incompatible elements. This signature, ubiquitous in early Proterozoic continental magmatic rocks, may indicate that the Matachewan LIP formed through contamination of the primary magmas with litho-spheric material or that the early Proterozoic mantle had a fundamentally different composition from the modern mantle. In addition to the radiating geometry of the dyke swarms, a plume origin for the Matachewan LIP is consistent with the geochemistry of some of the suites; these suites are used to constrain a source mantle potential temperature of c. 1500-1550 degrees C. Comparison of these mantle potential temperatures with estimated temperatures for the early Proterozoic upper mantle indicates that they are consistent with a hot mantle plume source for the magmatism. Geochemical data from coeval intrusions suggest that the plume head was compositionally heterogeneous and sampled material from both depleted and enriched mantle. As has been documented with less ancient but similarly vast LIPs, the emplacement of the Matachewan LIP probably had a significant impact on the early Proterozoic global environment. Compilation of the best age estimates for various suites shows that the emplacement of the Matachewan LIP occurred synchronously with the Great Oxidation Event. We explore the potential for the eruption of this LIP and the emission of its associated volcanic gases to have been a driver of the irreversible oxygenation of the Earth
- …