299 research outputs found

    Novel Tm3+-doped fluorotellurite glasses with enhanced quantum efficiency

    Get PDF
    In this paper, new highly Tm3+-doped tellurite glasses with host composition 75TeO2-xZnF2-yGeO2-12PbO-3Nb2O5 [x(5-15), y(0-5) mol%] are presented and compared to the Tm-doped tellurite glasses based on the traditional host composition: 75TeO2-20ZnO-5Na2O mol%. Enhanced quantum efficiency from 3F4 level was observed for the proposed glasses and thermal stability and viscosity values make them suitable for optical fiber drawing. Besides the host composition, substantial influence of Tm3+ concentration on luminescence and lifetime of excited 3F4 and 3H4 states were discusse

    Synthesis, structure and luminescence of Er3+-doped Y3Ga5O12 nano-garnets

    Full text link
    A novel Y3(1-x)Er3xGa5O12 nanocrystalline garnet has been synthesized by a sol-gel technique and a complete structural, morphological, vibrational, and optical characterization has been carried out in order to correlate the local structure of the Er3+ ions with their optical properties. The synthesized nanocrystals are found in a single-phase garnet structure with an average grain size of around 60 nm. The good crystalline quality of the garnet structure is confirmed by FTIR and Raman measurements, since the phonon modes of the nano-garnet are similar to those found in the single crystal garnet. Under blue laser excitation, intense green and red visible and 1.5 mu m infrared luminescences are observed, whose relative intensities are very sensitive to the Er3+ concentration. The dynamics of these emissions under pulsed laser excitations are analyzed in the framework of different energy transfer interactions. Intense visible upconverted luminescence can be clearly observed by the naked eye for all synthesized Er3+-doped Y3Ga5O12 nano-garnets under a cw 790 nm laser excitation. The power dependency and the dynamics of the upconverted luminescence confirm the existence of different two-photon upconversion processes for the green and red emissions that strongly depend on the Er3+ concentration, showing the potential of these nano-garnets as excellent candidates for developing new optical devices.This work has been partially supported by Ministerio de Ciencia e Innovacion of Spain (MICCIN) under The National Program of Materials (MAT2010-21270-C04-02; -03; -04), The Consolider-Ingenio 2010 Program (MALTA CSD2007-0045), and The National Infrastructure Program, by Ministerio de Economia y Competitividad of Spain (MINECO) within The Indo-Spanish Joint Programme of Cooperation in Science and Technology (PRI-PIBIN-2011-1153/DST-INT-Spain-P-38-11), and by the EU-FEDER funds (UCAN08-4E-008). S.F. Leon-Luis and V. Monteseguro wish to thank MICINN for the FPI grants (BES-2008-003353 and BES-2011-044596). Dr V. Venkatramu is grateful to DAE-BRNS, Government of India for the award of DAE Research Award for Young Scientists (no. 2010/20/34/5/BRNS/2223).Venkatramu, V.; León-Luis, SF.; Rodriguez-Mendoza, UR.; Monteseguro, V.; Manjón, FJ.; Lozano-Gorrín, AD.; Valiente, R.... (2012). Synthesis, structure and luminescence of Er3+-doped Y3Ga5O12 nano-garnets. Journal of Materials Chemistry. 22:13788-13799. doi:10.1039/c2jm31386cS13788137992

    Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry

    Get PDF
    Present technological demands in disparate areas, such as micro and nanofluidics, micro and nanoelectronics, photonics and biomedicine, among others, have reached to a development such that conventional contact thermal probes are not accomplished to perform accurate measurements with submicrometric spatial resolution. The development of novel non-contact thermal probes is, then, mandatory, contributing for an expansionary epoch of luminescence thermometry. Luminescence thermometry based on trivalent lanthanide ions becomes very popular since 2010 due to the unique versatility, stability and narrow emission band profiles of the ions that cover the entire electromagnetic spectrum with relatively high emission quantum yields. Here we give a perspective overview on the field since the beginnings in the 1950’s until the most recent cutting-edge examples. The current movement towards the technique usage as a new tool for thermal imaging, early tumor detection and as a tool for unveil properties of the thermometers themselves or of their local neighborhoods is also summarizedpublishe

    Spectroscopy of thulium and holmium heavily doped tellurite glasses

    Get PDF
    In this study, we report spectroscopic properties of Tm3þ and Ho3þ codoped tellurite glasses over a wide dopant concentration range in order to assess their potential laser performance under 790 nm diode laser excitation. The impact of Tm3þ and Ho3þ concentrations is investigated to identify specific candidates for fiber laser operation. The emission cross section is calculated and discussed, as well as the gain coefficient of this type of glasses. Energy transfer microparameters and critical ion distances are determined for 3H4, 3F4 (Tm3þ), and 5I7 (Ho3þ) emission levels in the framework of diffusionlimited regime and dipole-dipole interaction. We also report thermal properties of tested glasse

    Preparation and characterization of stable aqueous suspensions of up-converting Er3+/Yb3+-doped LiNbO3 nanocrystals

    Get PDF
    The preparation of LiNbO3:Er3+/Yb3+ nanocrystals and their up-conversion properties have been studied. It is demonstrated that polyethyleneimine- (PEI) assisted dispersion procedures allow obtaining stable aqueous LiNbO3:Er3+/Yb3+ powder suspensions, with average size particles well below the micron range (100–200 nm) and the isoelectric point of the suspension reaching values well above pH 7. After excitation of Yb3+ ions at a wavelength of 980 nm, the suspensions exhibit efficient, and stable, IR-to-visible (green and red) up-conversion properties, easily observed by the naked eye, very similar to those of the starting crystalline bulk material

    Nitric Oxide Releasing Materials Triggered by Near-Infrared Excitation Through Tissue Filters

    Full text link
    Novel materials for the phototherapeutic release of the bioregulator nitric oxide (nitrogen monoxide) are described. Also reported is a method for scanning these materials with a focused NIR beam to induce photouncaging while minimizing damage from local heating. The new materials consist of poly(dimethylsiloxane) composites with near-infrared-to-visible upconverting nanoparticles (UCNPs) that are cast into a biocompatible polymer disk (PD). These PDs are then impregnated with the photochemical nitric oxide precursor Roussin's black salt (RBS) to give UCNP_RBS_PD devices that generate NO when irradiated with 980 nm light. When the UCNP_RBS_PD composites were irradiated with NIR light through filters composed of porcine tissue, physiologically relevant NO concentrations were released, thus demonstrating the potential of such devices for minimally invasive phototherapeutic applications

    Two-color picosecond and continuous-wave experiments on anti-Stokes and Stokes carrier-transfer phenomena in GaAslAl(x)Ga(1-x)As and InGaP2/AlxGa1-xAs heterostructures

    Get PDF
    We present direct evidence of the two-step absorption process in anti-Stokes photoluminescence in both GaAs/AlxGa1-xAs and InGaP2/AlxGa1-xAs heterostructures using two-color picosecond and continuous-wave photoluminescence experiments. We show information about the lifetime of the defect states that participate in the two-step absorption process. As a result, we conclude that the long-lived states rather than excitons play the dominant role in the two-step absorption process. We also study the possible contribution of the two-step absorption process to Stokes carrier transfer in GaAs/AlxGa1-xAs asymmetric double quantum well structuresclos
    corecore