319 research outputs found

    Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    Get PDF
    BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control

    ECG Response of Koalas to Tourists Proximity: A Preliminary Study

    Get PDF
    Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists

    Acceleration predicts energy expenditure in a fat, flightless, diving bird

    Get PDF
    Funding The project was supported logistically by the French Polar Institute and funded by the PEW fellowship to Y.R.-C., the WWF-UK, and the Zone Atelier Antarctique et Terres Australes from the CNRS. D.M.W. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkƂodowska‐Curie Individual Fellowship Grant Agreement No. 748026.Peer reviewedPublisher PD

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring

    Get PDF
    Acknowledgements K. Ashbrook, M. Barrueto, K. Elner, A. Hargreaves, S. Jacobs, G. Lancton, M. LeVaillant, E. Grosbellet, A. Moody, A. Ronston, J. Provencher, P. Smith, K. Woo and P. Woodward helped in the field. J. Nakoolak kept us safe from bears. N. Sapir and two anonymous reviewers provided very useful comments on an earlier version of our manuscript. R. Armstrong at the Nunavut Research Institute, M. Mallory at the Canadian Wildlife Service Northern Research Division and C. Eberl at National Wildlife Research Centre in Ottawa provided logistical support. F. Crenner, N. Chatelain and M. Brucker customized the GPS at the IPHC-CNRS. KHE received financial support through a NSERC Vanier Canada Graduate Scholarship, ACUNS Garfield Weston Northern Studies scholarship and AINA Jennifer Robinson Scholarship and JFH received NSERC Discovery Grant funding. J. Welcker generously loaned some accelerometers. All procedures were approved under the guidelines of the Canadian Council for Animal Care.Peer reviewedPublisher PD

    Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae)

    Get PDF
    This study was financially supported by the following institutions: the WWF-UK through R. Downie, the Japanese Mombukagakusho and the Japanese Society for the Promotion of Science, the Zone Atelier Antarctique et Subantarctique –LTER France of the CNRS.The Southern Ocean is currently experiencing major environmental changes, including in sea‐ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco‐indicators of environmental conditions in the Antarctic region. Here, based on 9 years of sea‐ice data, we found that the breeding success of AdĂ©lie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea‐ice cover (ca. 20%). We further examined the effects of sea‐ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea‐ice cover. The relationship between several dive parameters and sea‐ice cover in the foraging area appears to be quadratic. In years of low and high sea‐ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea‐ice cover. Our study therefore suggests that sea‐ice cover is likely to affect the reproductive performance of AdĂ©lie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea‐ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long‐term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations.PostprintPeer reviewe

    Towards the integration of animal-borne instruments into global ocean observing systems

    Get PDF
    Funding: BBVA Foundation (“Ayudas FundaciĂłn BBVA a Equipos de InvestigaciĂłn CientĂ­fica 2016”) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 794938; Spanish Government (grant “Juan de la Cierva-FormaciĂłn” FJCI-2014-20064, grant “JosĂ© Castillejo” CAS17/00193) (D.M.).Marine animals are increasingly instrumented with environmental sensors that provide large volumes of oceanographic data. Here, we conduct an innovative and comprehensive global analysis to determine the potential contribution of animal‐borne instruments (ABI) into ocean observing systems (OOSs) and provide a foundation to establish future integrated ocean monitoring programmes. We analyse the current gaps of the long‐term Argo observing system (>1.5 million profiles) and assess its spatial overlap with the distribution of marine animals across eight major species groups (tuna and billfishes, sharks and rays, marine turtles, pinnipeds, cetaceans, sirenians, flying seabirds and penguins). We combine distribution ranges of 183 species and satellite tracking observations from >3,000 animals. Our analyses identify potential areas where ABI could complement OOS. Specifically, ABI have the potential to fill gaps in marginal seas, upwelling areas, the upper 10 m of the water column, shelf regions and polewards of 60° latitude. Our approach provides the global baseline required to plan the integration of ABI into global and regional OOS while integrating conservation and ocean monitoring priorities.Publisher PDFPeer reviewe

    Identification of animal movement patterns using tri-axial magnetometry

    Get PDF
    BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ï»żï»żResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry
    • 

    corecore