818 research outputs found

    A control theorem for pp-adic automorphic forms and Teitelbaum's L\mathcal{L}-invariant

    Full text link
    In this article, we describe an efficient method for computing Teitelbaum's pp-adic L\mathcal{L}-invariant. These invariants are realized as the eigenvalues of the L\mathcal{L}-operator acting on a space of harmonic cocycles on the Bruhat-Tits tree T\mathcal{T}, which is computable by the methods of Franc and Masdeu described in \cite{fm}. The main difficulty in computing the L\mathcal{L}-operator is the efficient computation of the pp-adic Coleman integrals in its definition. To solve this problem, we use overconvergent methods, first developed by Darmon, Greenberg, Pollack and Stevens. In order to make these methods applicable to our setting, we prove a control theorem for pp-adic automorphic forms of arbitrary even weight. Moreover, we give computational evidence for relations between slopes of L\mathcal{L}-invariants of different levels and weights for p=2p=2.Comment: 26 page

    Divergence Time Estimation Using Fossils as Terminal Taxa and the Origins of Lissamphibia

    Get PDF
    Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible

    Cryptic, sympatric diversity in Tegu lizards of the Tupinambis teguixin Group (Squamata, Sauria, Teiidae) and the description of three new species

    Get PDF
    Tegus of the genera Tupinambis and Salvator are the largest Neotropical lizards and the most exploited clade of Neotropical reptiles. For three decades more than 34 million tegu skins were in trade, about 1.02 million per year. The genus Tupinambis is distributed in South America east of the Andes, and currently contains four recognized species, three of which are found only in Brazil. However, the type species of the genus, T. teguixin, is known from Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, Trinidad and Tobago, and Venezuela (including the Isla de Margarita). Here we present molecular and morphological evidence that this species is genetically divergent across its range and identify four distinct clades some of which are sympatric. The occurrence of cryptic sympatric species undoubtedly exacerbated the nomenclatural problems of the past. We discuss the species supported by molecular and morphological evidence and increase the number of species in the genus Tupinambis to seven. The four members of the T. teguixin group continue to be confused with Salvator merianae, despite having a distinctly different morphology and reproductive mode. All members of the genus Tupinambis are CITES Appendix II. Yet, they continue to be heavily exploited, under studied, and confused in the minds of the public, conservationists, and scientists

    Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Get PDF
    Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes

    The Wabash River Symposium

    Get PDF

    Next-generation mitogenomics: A comparison of approaches applied to caecilian amphibian phylogeny

    Get PDF
    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case

    The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography

    Get PDF
    The Late Cretaceous saw distinctly endemic dinosaur faunas evolve in the northern and southern hemispheres. The Laurasian continents of North America and Asia were dominated by hadrosaurid and ceratopsian ornithischians, with tyrannosaurs as apex predators. In Gondwanan communities, including Africa, South America, India and Madagascar, titanosaurian sauropods dominated as herbivores and abelisaurids as predators. These patterns are thought to be driven by the breakup of Pangaea and formation of seaways limiting dispersal. Here, we report a new lambeosaurine hadrosaurid, Ajnabia odysseus gen. et sp. nov., from the upper Maastrichtian of Morocco, North Africa, the first Gondwanan representative of a clade formerly thought to be restricted to Laurasia. The new animal shows features unique to Hadrosauridae and specifically Lambeosaurinae. Phylogenetic analysis recovers it within Arenysaurini, a clade of lambeosaurines previously known only in Europe. Biogeographic modelling shows that lambeosaurines dispersed from Asia to Europe, then to Africa. Given the existence of large, persistent seaways isolating Africa and Europe from other continents, and the absence of the extensive, bidirectional interchange characterizing land bridges, these patterns suggest dispersals across marine barriers, similar to those seen in Cenozoic mammals, reptiles, and amphibians. Dispersal across marine barriers also occurs in other hadrosaurid lineages and titanosaurian sauropods, suggesting oceanic dispersal played a key role in structuring Mesozoic terrestrial dinosaur faunas

    Shedding light on the ‘dark side’ of phylogenetic comparative methods

    Get PDF
    ORCID: 0000-0003-4919-8655© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The attached file is the published version of the article

    Cranial biomechanics in basal urodeles: the Siberian salamander (Salamandrella keyserlingii) and its evolutionary and developmental implications

    Get PDF
    Developmental changes in salamander skulls, before and after metamorphosis, afect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties afect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under diferent tissue properties and ossifcation sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stifness required to perform a function versus the fxation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossifcation pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplifcation potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles

    Macroevolutionary diversification of glands for chemical communication in squamate reptiles

    Get PDF
    Chemical communication plays a central role in social, sexual and ecological interactions among animals. However, the macroevolutionary diversification of traits responsible for chemical signaling remains fundamentally unknown. Most research investigating evolutionary diversification of glands responsible for the production of chemical signals has focused on arthropods, while its study among vertebrates remains neglected. Using a global-scale dataset covering > 80% (7,904 species) of the living diversity of lizards and snakes (squamates), we investigate rates, trajectories and phylogenetic patterns of diversification of their follicular glands for chemical communication. We observed these glands in 13.66% of species, that their expression has varying phylogenetic signal among lineages, and that the crown squamate ancestor lacked follicular glands, which therefore originated and diversified subsequently during their evolutionary history. Additionally, our findings challenge the longstanding view that within squamates the Iguania are visually oriented while Scleroglossa are chemically-oriented, given that Iguania doubles Scleroglossa in the frequency of glands. Our phylogenetic analyses identified stabilizing selection as the best model describing follicular gland diversification, and revealed high rates of disparity. We provide the first global-scale analysis investigating the diversification of one of the main forms of communication among reptiles, presenting a macroevolutionary angle to questions traditionally explored at microevolutionary scale
    corecore