2,057 research outputs found
Simulation studies related to the particle identification by the forward and backward RICH detectors at Electron Ion Collider
The Electron-Ion collider (EIC) will be the ultimate facility to study the
dynamics played by the colored quarks and gluons to the emergence of the global
phenomenology of the nucleons and nuclei as described by Quantum
Chromodynamics. The physics programs will greatly rely on efficient particle
identification (PID) in both the forward and the backward regions. The forward
and the backward RICHes of the EIC have to be able to cover wide acceptance and
momentum ranges; in the forward region a dual radiator RICH (dRICH) is foreseen
and in the backward region a proximity-focusing RICH can be foreseen to be
employed. The geometry and the performance studies of the dRICH have been
performed as prescribed in the EIC Yellow Report using the ATHENA software
framework. This part of our work reports the effort following the call for EIC
detector proposal the studies related to the forward and the backward RICHes
performance. In the forward region, dRICH performance showed a pion-kaon
separation from around 1 GeV/c to 50 GeV/c at a three sigma level; the
proximity focusing RICH (pfRICH) foreseen for the backward region can reach
three sigma separation up to 3 GeV/c for e/ and up to 10 GeV/c for /K
mass hypothesis.Comment: 4 pages, 8 figure
Multiplicity Studies and Effective Energy in ALICE at the LHC
In this work we explore the possibility to perform ``effective energy''
studies in very high energy collisions at the CERN Large Hadron Collider (LHC).
In particular, we focus on the possibility to measure in collisions the
average charged multiplicity as a function of the effective energy with the
ALICE experiment, using its capability to measure the energy of the leading
baryons with the Zero Degree Calorimeters. Analyses of this kind have been done
at lower centre--of--mass energies and have shown that, once the appropriate
kinematic variables are chosen, particle production is characterized by
universal properties: no matter the nature of the interacting particles, the
final states have identical features. Assuming that this universality picture
can be extended to {\it ion--ion} collisions, as suggested by recent results
from RHIC experiments, a novel approach based on the scaling hypothesis for
limiting fragmentation has been used to derive the expected charged event
multiplicity in interactions at LHC. This leads to scenarios where the
multiplicity is significantly lower compared to most of the predictions from
the models currently used to describe high energy collisions. A mean
charged multiplicity of about 1000-2000 per rapidity unit (at ) is
expected for the most central collisions at .Comment: 12 pages, 19 figures. In memory of A. Smirnitski
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
Direct detection of charged particles with SiPMs
The direct response of Silicon PhotoMultipliers being traversed by a MIP charged particle have been studied in a systematic way for the first time. Using beam test data, time resolution and the crosstalk probability have been measured. A characterization of the SiPM by means of a laser beam is also reported. The results obtained for different sensors indicate a measured time resolution around 40-70 ps. Although particles are expected to traverse only one SPAD per event, crosstalk measurements on different sensors indicate an unexpected higher value with respect to the one related to the sensor noise
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at , 2.76 and 7 TeV
Measurements of the sphericity of primary charged particles in minimum bias
proton--proton collisions at , 2.76 and 7 TeV with the ALICE
detector at the LHC are presented. The observable is linearized to be collinear
safe and is measured in the plane perpendicular to the beam direction using
primary charged tracks with GeV/c in . The
mean sphericity as a function of the charged particle multiplicity at
mid-rapidity () is reported for events with different
scales ("soft" and "hard") defined by the transverse momentum of the leading
particle. In addition, the mean charged particle transverse momentum versus
multiplicity is presented for the different event classes, and the sphericity
distributions in bins of multiplicity are presented. The data are compared with
calculations of standard Monte Carlo event generators. The transverse
sphericity is found to grow with multiplicity at all collision energies, with a
steeper rise at low , whereas the event generators show the
opposite tendency. The combined study of the sphericity and the mean with multiplicity indicates that most of the tested event generators
produce events with higher multiplicity by generating more back-to-back jets
resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with
tune PERUGIA-2011 exhibits a noticeable improvement in describing the data,
compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16,
published version, figures from
http://aliceinfo.cern.ch/ArtSubmission/node/308
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
- …