211 research outputs found

    Measuring performance of social and non-profit Microfinance Institutions (MFIs): An application of multicriterion methodology

    Full text link
    Microfinance Institutions (MFIs) are special financial institutions of both social and nonprofit nature whose performance has been traditionally measured by means of financial ratios. However, performance rankings are usually based on a single criterion, so the performance measure varies according to the criterion used. This paper proposes a multicriterion methodology based on goal programming that simultaneously considers different categories involved in the performance of Microfinance Institutions. The paper is illustrated by a sample of Latin American MFIs.Bartual Sanfeliu, C.; Cervelló Royo, RE.; Moya Clemente, I. (2013). Measuring performance of social and non-profit Microfinance Institutions (MFIs): An application of multicriterion methodology. Mathematical and Computer Modelling. 57(7-8):1671-1678. doi:10.1016/j.mcm.2011.11.010S16711678577-

    Tuning Proton Conductivity in Alkali Metal Phosphonocarboxylates by Cation Size-Induced and Water-Facilitated Proton Transfer Pathways

    Get PDF
    The structural and functional chemistry of a family of alkali-metal ions with racemic R,S-hydroxyphosphonoacetate (M-HPAA; M = Li, Na, K, Cs) are reported. Crystal structures were determined by X-ray data (Li+, powder diffraction following an ab initio methodology; Na+, K+, Cs+, single crystal). A gradual increase in dimensionality directly proportional to the alkali ionic radius was observed. [Li3(OOCCH(OH)PO3)-(H2O)4]·H2O (Li-HPAA) shows a 1D framework built up by Li-ligand “slabs” with Li+ in three different coordination environments (4-, 5-, and 6-coordinated). Na-HPAA, Na2(OOCCH(OH)PO3H)(H2O)4, exhibits a pillared layered “house of cards” structure, while K-HPAA, K2(OOCCH(OH)PO3H)(H2O)2, and Cs-HPAA, Cs(HOOCCH(OH)-PO3H), typically present intricate 3D frameworks. Strong hydrogen-bonded networks are created even if no water is present, as is the case in Cs-HPAA. As a result, all compounds show proton conductivity in the range 3.5 × 10−5 S cm−1 (Cs-HPAA) to 5.6 × 10−3 S cm−1 (Na-HPAA) at 98% RH and T = 24 °C. Differences in proton conduction mechanisms, Grothuss (Na+ and Cs+) or vehicular (Li+ and K+), are attributed to the different roles played by water molecules and/or proton transfer pathways between phosphonate and carboxylate groups of the ligand HPAA. Upon slow crystallization, partial enrichment in the S enantiomer of the ligand is observed for Na-HPAA, while the Cs-HPAA is a chiral compound containing only the S enantiomer.Proyectos nacionales MAT2010-15175 y MAT2013-41836-

    The ζ Toxin Induces a Set of Protective Responses and Dormancy

    Get PDF
    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε2) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–5×10−5). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K+. We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε2 antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity

    Strength of Social Tie Predicts Cooperative Investment in a Human Social Network

    Get PDF
    Social networks – diagrams which reflect the social structure of animal groups – are increasingly viewed as useful tools in behavioural ecology and evolutionary biology. Network structure may be especially relevant to the study of cooperation, because the action of mechanisms which affect the cost:benefit ratio of cooperating (e.g. reciprocity, punishment, image scoring) is likely to be mediated by the relative position of actor and recipient in the network. Social proximity could thus affect cooperation in a similar manner to biological relatedness. To test this hypothesis, we recruited members of a real-world social group and used a questionnaire to reveal their network. Participants were asked to endure physical discomfort in order to earn money for themselves and other group members, allowing us to explore relationships between willingness to suffer a cost on another's behalf and the relative social position of donor and recipient. Cost endured was positively correlated with the strength of the social tie between donor and recipient. Further, donors suffered greater costs when a relationship was reciprocated. Interestingly, participants regularly suffered greater discomfort for very close peers than for themselves. Our results provide new insight into the effect of social structure on the direct benefits of cooperation

    c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression

    Get PDF
    Treatment of muscle-invasive bladder cancer remains a major clinical challenge. Aberrant HGF/c-MET upregulation and activation is frequently observed in bladder cancer correlating with cancer progression and invasion. However, the mechanisms underlying HGF/c-MET-mediated invasion in bladder cancer remains unknown. As part of a negative feedback loop SMAD7 binds to SMURF2 targeting the TGFβ receptor for degradation. Under these conditions, SMAD7 acts as a SMURF2 agonist by disrupting the intramolecular interactions within SMURF2. We demonstrate that HGF stimulates TGFβ signalling through c-SRC-mediated phosphorylation of SMURF2 resulting in loss of SMAD7 binding and enhanced SMURF2 C2-HECT interaction, inhibiting SMURF2 and enhancing TGFβ receptor stabilisation. This upregulation of the TGFβ pathway by HGF leads to TGFβ-mediated EMT and invasion. In vivo we show that TGFβ receptor inhibition prevents bladder cancer invasion. Furthermore, we make a rationale for the use of combinatorial TGFβ and MEK inhibitors for treatment of high-grade non-muscle-invasive bladder cancers

    Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates

    Get PDF
    Oat (Avena sativa) is one of the most cultivated and consumed cereals worldwide. Recognized among cereals for its high protein content (12% to 24%), it makes it an excellent source of bioactive peptides, which could be modified during processes such as heating and gastrointestinal digestion (GID). This work aims to evaluate the impact of heat treatment on the proteolysis of oat proteins and on the evolution of antioxidant peptide release during in vitro static GID, in terms of comparative analysis between cooked oat protein concentrate (COPC) and non-heated oat protein concentrate (OPC) samples. The protein extraction method and cooking procedure used showed no detrimental effects on protein quality. After GID, the proportion of free amino acids/dipeptides (40% for both samples (OPC and COPC), thus producing peptides with low molecular weight and enhanced bioactivity. Furthermore, during GID, the amino acid profile showed an increase in essential, positively-charged, hydrophobic and aromatic amino acids. At the end of GID, the reducing power of OPC and COPC increased >0.3 and 8-fold, respectively, in comparison to the non-digested samples; while ABTS•+ and DPPH• showed a >20-fold increase. Fe2+ chelating capacity of OPC and COPC was enhanced >4 times; similarly, Cu2+ chelation showed a >19-fold enhancement for OPC and >10 for COPC. β-carotene bleaching activity was improved 0.8 times in OPC and >9 times in COPC; the oxygen radical antioxidant capacity assay increased 2 times in OPC and >4.7 times in COPC, respectively. This study suggests that OPC after cooking and GID positively influenced the nutritional and bioactive properties of oat peptides. Thus, COPC could be used as a functional food ingredient with health-promoting effects, as hydrothermal treatment is frequently used for this type of cereals

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore