1,507 research outputs found
Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes
Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential
Egocentric framing - one way people may fail in aswitch dilemma: evidence from excessive lane switching
types: ArticlePre-print version published in Munich Personal RePEc Archive. NOTICE: this is the author’s version of a work that was accepted for publication in Acta Psychologica. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Psychologica, November 2013, 144, 604–616To study switching behavior, an experiment mimicking the state of a driver on the road was conducted. In each trial participants were given a chance to switch lanes. Despite the fact that lane switching had no sound rational basis, participants often switched lanes when the speed of driving in their lane on the previous trial was relatively slow. That tendency was discerned even when switching behavior had been sparsely reinforced, and was especially marked in almost a third of the participants, who manifested it consistently. The findings illustrate a type of behavior occuring in various contexts (e.g., stocks held in a portfolio, conduct pertinent for residual life expectancy, supermarket queues). We argue that this behavior may be due to a fallacy reminiscent of that arising in the well-known “envelopes problem”, in which each of two players holds a sum of money of which she knows nothing about except that it is either half or twice the amount held by the other player. Players may be paradoxically tempted to exchange assets, since an exchange fallaciously appears to always yield an expected value greater than whatever is regarded as the player’s present assets. We argue that the fallacy is due to egocentrically framing the problem as if the “amount I have” is definite, albeit unspecified, and show that framing the paradox acentrically instead eliminates the incentive to exchange assets. A possible psychological source for the human disposition to frame problems in a way that inflates expected gain is discussed. Finally, a heuristic meant to avert the source of the fallacy is proposed
Metastability in spin polarised Fermi gases and quasiparticle decays
We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each process and calculated their rates, we apply this understanding to a Fermi sea of polarons by linking its metastability to the stability of individual polarons, and predicting a region of metastability for the normal partially polarised phase. In the limit of a single impurity, this region extends from the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons
Exploring the Thermodynamics of a Universal Fermi Gas
From sand piles to electrons in metals, one of the greatest challenges in
modern physics is to understand the behavior of an ensemble of strongly
interacting particles. A class of quantum many-body systems such as neutron
matter and cold Fermi gases share the same universal thermodynamic properties
when interactions reach the maximum effective value allowed by quantum
mechanics, the so-called unitary limit [1,2]. It is then possible to simulate
some astrophysical phenomena inside the highly controlled environment of an
atomic physics laboratory. Previous work on the thermodynamics of a
two-component Fermi gas led to thermodynamic quantities averaged over the trap
[3-5], making it difficult to compare with many-body theories developed for
uniform gases. Here we develop a general method that provides for the first
time the equation of state of a uniform gas, as well as a detailed comparison
with existing theories [6,14]. The precision of our equation of state leads to
new physical insights on the unitary gas. For the unpolarized gas, we prove
that the low-temperature thermodynamics of the strongly interacting normal
phase is well described by Fermi liquid theory and we localize the superfluid
transition. For a spin-polarized system, our equation of state at zero
temperature has a 2% accuracy and it extends the work of [15] on the phase
diagram to a new regime of precision. We show in particular that, despite
strong correlations, the normal phase behaves as a mixture of two ideal gases:
a Fermi gas of bare majority atoms and a non-interacting gas of dressed
quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure
Telephone conversation impairs sustained visual attention via a central bottleneck
Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking
Dobinski-type relations: Some properties and physical applications
We introduce a generalization of the Dobinski relation through which we
define a family of Bell-type numbers and polynomials. For all these sequences
we find the weight function of the moment problem and give their generating
functions. We provide a physical motivation of this extension in the context of
the boson normal ordering problem and its relation to an extension of the Kerr
Hamiltonian.Comment: 7 pages, 1 figur
Energy Dependence of Nuclear Transparency in C(p,2p) Scattering
The transparency of carbon for (p,2p) quasi-elastic events was measured at
beam energies ranging from 6 to 14.5 GeV at 90 degrees c.m. The four momentum
transfer squared q*q ranged from 4.8 to 16.9 (GeV/c)**2. We present the
observed energy dependence of the ratio of the carbon to hydrogen cross
sections. We also apply a model for the nuclear momentum distribution of carbon
to normalize this transparency ratio. We find a sharp rise in transparency as
the beam energy is increased to 9 GeV and a reduction to approximately the
Glauber level at higher energies.Comment: 4 pages, 2figures, submitted to PR
Feynman diagrams versus Fermi-gas Feynman emulator
Precise understanding of strongly interacting fermions, from electrons in
modern materials to nuclear matter, presents a major goal in modern physics.
However, the theoretical description of interacting Fermi systems is usually
plagued by the intricate quantum statistics at play. Here we present a
cross-validation between a new theoretical approach, Bold Diagrammatic Monte
Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we
compute and measure with unprecedented accuracy the normal-state equation of
state of the unitary gas, a prototypical example of a strongly correlated
fermionic system. Excellent agreement demonstrates that a series of Feynman
diagrams can be controllably resummed in a non-perturbative regime using BDMC.
This opens the door to the solution of some of the most challenging problems
across many areas of physics
Short-lived Nuclei in the Early Solar System: Possible AGB Sources
(Abridged) We review abundances of short-lived nuclides in the early solar
system (ESS) and the methods used to determine them. We compare them to the
inventory for a uniform galactic production model. Within a factor of two,
observed abundances of several isotopes are compatible with this model. I-129
is an exception, with an ESS inventory much lower than expected. The isotopes
Pd-107, Fe-60, Ca-41, Cl-36, Al-26, and Be-10 require late addition to the
solar nebula. Be-10 is the product of particle irradiation of the solar system
as probably is Cl-36. Late injection by a supernova (SN) cannot be responsible
for most short-lived nuclei without excessively producing Mn-53; it can be the
source of Mn-53 and maybe Fe-60. If a late SN is responsible for these two
nuclei, it still cannot make Pd-107 and other isotopes. We emphasize an AGB
star as a source of nuclei, including Fe-60 and explore this possibility with
new stellar models. A dilution factor of about 4e-3 gives reasonable amounts of
many nuclei. We discuss the role of irradiation for Al-26, Cl-36 and Ca-41.
Conflict between scenarios is emphasized as well as the absence of a global
interpretation for the existing data. Abundances of actinides indicate a
quiescent interval of about 1e8 years for actinide group production in order to
explain the data on Pu-244 and new bounds on Cm-247. This interval is not
compatible with Hf-182 data, so a separate type of r-process is needed for at
least the actinides, distinct from the two types previously identified. The
apparent coincidence of the I-129 and trans-actinide time scales suggests that
the last actinide contribution was from an r-process that produced actinides
without fission recycling so that the yields at Ba and below were governed by
fission.Comment: 92 pages, 14 figure files, in press at Nuclear Physics
- …
