90 research outputs found

    Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation

    Get PDF
    The aim of this work is to perform numerical simulations of the propagation of a laser in a plasma. At each time step, one has to solve a Helmholtz equation in a domain which consists in some hundreds of millions of cells. To solve this huge linear system, one uses a iterative Krylov method with a preconditioning by a separable matrix. The corresponding linear system is solved with a block cyclic reduction method. Some enlightments on the parallel implementation are also given. Lastly, numerical results are presented including some features concerning the scalability of the numerical method on a parallel architecture

    Fast matrix computations for pair-wise and column-wise commute times and Katz scores

    Full text link
    We first explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pair-wise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adopt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pair-wise commute time method and column-wise Katz algorithm both have attractive theoretical properties and empirical performance.Comment: 35 pages, journal version of http://dx.doi.org/10.1007/978-3-642-18009-5_13 which has been submitted for publication. Please see http://www.cs.purdue.edu/homes/dgleich/publications/2011/codes/fast-katz/ for supplemental code

    Disappearance of plasmaspheric hiss following interplanetary shock

    Get PDF
    Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss

    The species diversity × fire severity relationship is hump-shaped in semiarid yellow pine and mixed conifer forests

    Get PDF
    The combination of direct human influences and the effects of climate change are resulting in altered ecological disturbance regimes, and this is especially the case for wildfires. Many regions that historically experienced low–moderate severity fire regimes are seeing increased area burned at high severity as a result of interactions between high fuel loads and climate warming with a number of negative ecological effects. While ecosystem impacts of altered fire regimes have been examined in the literature, little is known of the effects of changing fire regimes on forest understory plant diversity even though understory taxa comprise the vast majority of forest plant species and play vital roles in overall ecosystem function. We examined understory plant diversity across gradients of wildfire severity in eight large wildfires in yellow pine and mixed conifer temperate forests of the Sierra Nevada, California, USA. We found a generally unimodal hump-shaped relationship between local (alpha) plant diversity and fire severity. High-severity burning resulted in lower local diversity as well as some homogenization of the flora at the regional scale. Fire severity class, post-fire litter cover, and annual precipitation were the best predictors of understory species diversity. Our research suggests that increases in fire severity in systems historically characterized by low and moderate severity fire may lead to plant diversity losses. These findings indicate that global patterns of increasing fire size and severity may have important implications for biodiversity

    Lateral flow test engineering and lessons learned from COVID-19

    Get PDF
    The acceptability and feasibility of large-scale testing with lateral flow tests (LFTs) for clinical and public health purposes has been demonstrated during the COVID-19 pandemic. LFTs can detect analytes in a variety of samples, providing a rapid read-out, which allows self-testing and decentralized diagnosis. In this Review, we examine the changing LFT landscape with a focus on lessons learned from COVID-19. We discuss the implications of LFTs for decentralized testing of infectious diseases, including diseases of epidemic potential, the ‘silent pandemic’ of antimicrobial resistance, and other acute and chronic infections. Bioengineering approaches will play a key part in increasing the sensitivity and specificity of LFTs, improving sample preparation, incorporating nucleic acid amplification and detection, and enabling multiplexing, digital connection and green manufacturing, with the aim of creating the next generation of high-accuracy, easy-to-use, affordable and digitally connected LFTs. We conclude with recommendations, including the building of a global network of LFT research and development hubs to facilitate and strengthen future diagnostic resilience

    Remifentanil-propofol analgo-sedation shortens duration of ventilation and length of ICU stay compared to a conventional regimen: A centre randomised, cross-over, open-label study in the Netherlands

    Get PDF
    Objective: Compare duration of mechanical ventilation (MV), weaning time, ICU-LOS (ICU-LOS), efficacy and safety of remifentanil-based regimen with conventional sedation and analgesia. Design: Centre randomised, open-label, crossover, 'real-life' study. Setting: 15 Dutch hospitals. Patients: Adult medical and post-surgical ICU patients with anticipated short-term (2-3 days) MV. Interventions: Patient cohorts were randomised to remifentanil-based regimen (n = 96) with propofol as required, for a maximum of 10 days, or to conventional regimens (n = 109) of propofol, midazolam or lorazepam combined with fentanyl or morphine. Measurements and main results: Outcomes were weaning time, duration of MV, ICU-LOS, sedation- and analgesia levels, intensivist/ICU nurse satisfaction, adverse events, mean arterial pressure, heart rate. Median duration of ventilation (MV) was 5.1 days with conventional treatment versus 3.9 days with remifentanil (NS). The remifentanil-based regimen reduced median weaning time by 18.9 h (P = 0.0001). Median ICU-LOS was 7.9 days versus 5.9 days, respectively (NS). However, the treatment effects on duration of MV and ICU stay were time-dependent: patients were almost twice as likely to be extubated (P = 0.018) and discharged from the ICU (P = 0.05) on day 1-3. Propofol doses were reduced by 20% (P = 0.05). Remifentanil also improved sedation-agitation scores (P < 0.0001) and intensivist/ICU nurse satisfaction (P < 0.0001). All other outcomes were comparable. Conclusions: In patients with an expected short-term duration of MV, remifentanil significantly improves sedation and agitation levels and reduces weaning time. This contributes to a shorter duration of MV and ICU-LOS

    Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants

    Get PDF
    Aim: A fundamental question in macroecology centres around understanding the relationship between species' local abundance and their distribution in geographical and climatic space (i.e. the multi‐dimensional climatic space or climatic niche). Here, we tested three macroecological hypotheses that link local abundance to the following range properties: (a) the abundance-range size relationship, (b) the abundance-range centre relationship and (c) the abundance-suitability relationship. Location: Europe. Taxon: Vascular plants. Methods: Distribution range maps were extracted from the Chorological Database Halle to derive information on the range and niche sizes of 517 European vascular plant species. To estimate local abundance, we assessed samples from 744,513 vegetation plots in the European Vegetation Archive, where local species' abundance is available as plant cover per plot. We then calculated the 'centrality', that is, the distance between the location of the abundance observation and each species' range centre in geographical and climatic space. The climatic suitability of plot locations was estimated using coarse‐grain species distribution models (SDMs). The relationships between centrality or climatic suitability with abundance was tested using linear models and quantile regression. We summarized the overall trend across species' regression slopes from linear models and quantile regression using a meta‐analytical approach. Results: We did not detect any positive relationships between a species' mean local abundance and the size of its geographical range or climatic niche. Contrasting yet significant correlations were detected between abundance and centrality or climatic suitability among species. Main conclusions: Our results do not provide unequivocal support for any of the relationships tested, demonstrating that determining properties of species' distributions at large grains and extents might be of limited use for predicting local abundance, including current SDM approaches. We conclude that environmental factors influencing individual performance and local abundance are likely to differ from those factors driving plant species' distribution at coarse resolution and broad geographical extents

    Structure, Form and Meaning in Microgravity - the Integral Space Habitation

    No full text
    There will likely be an intensive colonization movement into space within the foreseeable future. Presupposing eventual adaptation to the microgravitational environment, the structural, habitable, and meaningful environment Space Architecture will be fundamentally redefined. The primary shift in spatial conception will be from a two-dimensional decentralized horizontal schema with singular up-down vertical axis, to a three-dimensional centralized polyaxial schema with in-out the primary existential axis. Mega-structures are proposed, which provide ample habitable space in Space. Their structure is provided by means centralized tensile lattices stressed by pneumatic enclosures. These are envisaged to be large-scale, of about 13 kilometers in diameter each. with Primary Tensile Lattice ties of 1 km. length. The geometry of the tensile lattice is given by the author's centralized polyaxial zonahedral expansions. Secondary tensile assemblages are then stressed by means of the primary tensile lattice, with tertiary and subordinate assemblages as desired. This permits a'soft'non-rigid architecture to be developed. Principles of traditional architecture are relevant to space habitation studies, and indicate Space Habitation theory should seek to integrate metaphysical, psychic, and physical human needs appropriate to dwelling in microgravity. Ideally the Space Habitation should integrate structure form and meanin

    Some Metaphysical Considerations Raised by the Computer-Generated Electronic Environment

    No full text
    The effects of the computer on the designer are profound, and affect design methodology and habitation. The computer-aided designer experiences within the electronic environment a freedom from certain important constraints of real-world modelling of physical reality. Electronic configurations are not bound by the constructional, material, or structural constraints operating in the physical world. This freedom is liberating, in that the imagination is given a powerful tool with which to develop external representations of ideal environments. But there is also the potential of destructive tendencies. Is the increasing sophistication of external tools of the imagination at the expense of the ability of the individual to master the internal imagination - are we externalizing at the price of inner vision? There is also the possibility of greater alienation from the physical world. We loose the tactile sensitivity, and the spatial and structural intuition with which we draw and make physical models. These are essential parts of the design of the physical environment. We are left on the horns of a dilemma. The rapid response and exciting images of the computergenerated video environment suggest we are entering an era when architecture itself becomes electronic. The physical built-form recedes in importance, and may even become redundant. But we must also ask: Are we entering a post-computer age? Will we realize the potential profundity of our innate human biocomputers - to the point where we renounce the hard technology of the material for the soft technology of consciousness

    Tomato Information Kit. Agrilink, your growing guide to better farming guide

    No full text
    Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit www.daf.qld.gov.au This publication has been reprinted as a digital book without any changes to the content published in 1998. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1998. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of Tomatoes. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication
    corecore